IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.24449.html
   My bibliography  Save this paper

Efficient simulation of prices for European call options under Heston stochastic-local volatility model: a comparison of methods

Author

Listed:
  • Meng cai
  • Tianze Li

Abstract

The Heston stochastic-local volatility model, consisting of a asset price process and a Cox--Ingersoll--Ross-type variance process, offers a wide range of applications in the financial industry. The pursuit for efficient model evaluation has been assiduously ongoing and central to which is the numerical simulation of CIR process. Different from the weakly convergent noncentral chi-squared approximation used in 25, this paper considers two strongly convergent and positivity-preserving methods for CIR process under Lamperti transformation, namely, the truncated Euler method and the backward Euler method. It should be noted that these two methods are completely different. The explicit truncated Euler method is computationally effective and remains robust under high volatility, while the implicit backward Euler method provides high computational accuracy and stable performance. Numerical experiments on European call options are presented to show the superiority of different methods.

Suggested Citation

  • Meng cai & Tianze Li, 2025. "Efficient simulation of prices for European call options under Heston stochastic-local volatility model: a comparison of methods," Papers 2509.24449, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2509.24449
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.24449
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Wenbin Hu & Junzi Zhou, 2017. "Backward simulation methods for pricing American options under the CIR process," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1683-1695, November.
    6. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    7. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    8. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    9. Christoph Reisinger & Maria Olympia Tsianni, 2025. "Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model," Papers 2504.14343, arXiv.org.
    10. Xiaobo Hu & Jungong Xue, 2025. "Efficient computations of prices and Greeks for autocallables under Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 25(8), pages 1199-1213, August.
    11. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Reisinger & Maria Olympia Tsianni, 2025. "Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model," Papers 2504.14343, arXiv.org.
    2. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    3. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    4. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    5. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    6. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    7. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    8. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    11. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    12. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    13. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    14. Florence Guillaume & Wim Schoutens, 2014. "Heston Model: The Variance Swap Calibration," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 76-89, April.
    15. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
    16. repec:uts:finphd:41 is not listed on IDEAS
    17. repec:hum:wpaper:sfb649dp2007-067 is not listed on IDEAS
    18. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    19. Mesias Alfeus & Ludger Overbeck & Erik Schlögl, 2019. "Regime switching rough Heston model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 538-552, May.
    20. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    21. Long Teng & Matthias Ehrhardt & Michael Günther, 2016. "On The Heston Model With Stochastic Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-25, September.
    22. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.24449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.