IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00450949.html
   My bibliography  Save this paper

Quadratic hedging in an incomplete market derived by an influent informed investor

Author

Listed:
  • Anne Eyraud-Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

In this paper a model with an influent and informed investor is presented. The studied problem is the point of view of a non informed agent hedging an option in this influenced and informed market. Her lack of information makes the market incomplete to the non informed agent. The obtained results, by means of Malliavin calculus and Clark-Ocone Formula, as well as Filtering Theory are the expressions and a comparison between the strategy of the non informed trader, and the strategy of the informed agent. An expression of the residual risk a non informed trader keeps by detaining an option in this influenced and informed market is derived using a quadratic approach of hedging in incomplete market. Finally, the analysis leads to a measure of the lack of information that makes the incompleteness of the market. The financial interpretation is explained throughout the theoretical analysis, together with an example of such influenced informed model.

Suggested Citation

  • Anne Eyraud-Loisel, 2013. "Quadratic hedging in an incomplete market derived by an influent informed investor," Post-Print hal-00450949, HAL.
  • Handle: RePEc:hal:journl:hal-00450949
    DOI: 10.1080/17442508.2011.652632
    Note: View the original document on HAL open archive server: https://hal.science/hal-00450949
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00450949/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/17442508.2011.652632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Axel Grorud & Monique Pontier, 1998. "Insider Trading in a Continuous Time Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 331-347.
    2. Anne Eyraud-Loisel, 2005. "Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps," Post-Print hal-01298905, HAL.
    3. Christian Gourieroux & Jean Paul Laurent & Huyên Pham, 1998. "Mean‐Variance Hedging and Numéraire," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 179-200, July.
    4. Cuoco, Domenico & Cvitanic, Jaksa, 1998. "Optimal consumption choices for a 'large' investor," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 401-436, March.
    5. Bouchard, Bruno & Elie, Romuald, 2008. "Discrete-time approximation of decoupled Forward-Backward SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 53-75, January.
    6. Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
    7. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    8. José Corcuera & Peter Imkeller & Arturo Kohatsu-Higa & David Nualart, 2004. "Additional utility of insiders with imperfect dynamical information," Finance and Stochastics, Springer, vol. 8(3), pages 437-450, August.
    9. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    10. Eyraud-Loisel, Anne, 2005. "Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1745-1763, November.
    11. Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
    12. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Eyraud-Loisel, 2019. "How Does Asymmetric Information Create Market Incompleteness?," Post-Print hal-01998386, HAL.
    2. Anne Eyraud-Loisel, 2019. "How Does Asymmetric Information Create Market Incompleteness?," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 531-538, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Eyraud-Loisel, 2011. "Option Hedging By An Influent Informed Investor," Post-Print hal-00450948, HAL.
    2. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    3. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    4. Anne Eyraud-Loisel, 2019. "How Does Asymmetric Information Create Market Incompleteness?," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 531-538, June.
    5. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    6. Dirk Becherer & Martin Schweizer, 2005. "Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes," Papers math/0505208, arXiv.org.
    7. Jiang Wu & Fucheng Liao & Masayoshi Tomizuka, 2017. "Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(1), pages 129-137, January.
    8. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    9. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    10. Behzad Alimoradian & Karim Barigou & Anne Eyraud-Loisel, 2022. "Derivatives under market impact: Disentangling cost and information," Working Papers hal-03668432, HAL.
    11. Mauricio Elizalde & Carlos Escudero & Tomoyuki Ichiba, 2022. "Optimal investment with insider information using Skorokhod & Russo-Vallois integration," Papers 2211.07471, arXiv.org, revised Dec 2024.
    12. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    13. Lorenc Kapllani & Long Teng, 2020. "Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations," Papers 2010.01319, arXiv.org, revised Jun 2022.
    14. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    15. Kohatsu-Higa, Arturo & Yamazato, Makoto, 2008. "Enlargement of filtrations with random times for processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1136-1158, July.
    16. Neda Esmaeeli & Peter Imkeller, 2015. "American Options with Asymmetric Information and Reflected BSDE," Papers 1505.05046, arXiv.org, revised Aug 2017.
    17. Bouchard, Bruno & Elie, Romuald, 2008. "Discrete-time approximation of decoupled Forward-Backward SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 53-75, January.
    18. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    19. Caroline Hillairet & Ying Jiao, 2012. "Credit Risk with asymmetric information on the default threshold," Post-Print hal-00663136, HAL.
    20. Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Manuela Royer-Carenzi, 2010. "Hedging of Defaultable Contingent Claims using BSDE with uncertain time horizon," Post-Print hal-00341431, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00450949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.