Why Bonds Fail Differently? Explainable Multimodal Learning for Multi-Class Default Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Heger, Julia & Min, Aleksey & Zagst, Rudi, 2024. "Analyzing credit spread changes using explainable artificial intelligence," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Altman, Edward I. & Hu, Xiaolu & Yu, Jing, 2022. "Has the Evergrande debt crisis rattled Chinese capital markets? A series of event studies and their implications," Finance Research Letters, Elsevier, vol. 50(C).
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
- Melissa Dell, 2025.
"Deep Learning for Economists,"
Journal of Economic Literature, American Economic Association, vol. 63(1), pages 5-58, March.
- Melissa Dell, 2024. "Deep Learning for Economists," NBER Working Papers 32768, National Bureau of Economic Research, Inc.
- Melissa Dell, 2024. "Deep Learning for Economists," Papers 2407.15339, arXiv.org, revised Nov 2024.
- Galil, Koresh & Hauptman, Ami & Rosenboim, Rosit Levy, 2023.
"Prediction of corporate credit ratings with machine learning: Simple interpretative models,"
Finance Research Letters, Elsevier, vol. 58(PD).
- Koresh Galil & Ami Hauptman & Rosit Levy Rosenboim, 2023. "Prediction of Corporate Credit Ratings with Machine Learning: Simple Interpretative Models," Working Papers 2308, Ben-Gurion University of the Negev, Department of Economics.
- Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
- Bao, Jack & Hou, Kewei & Zhang, Shaojun, 2023.
"Systematic default and return predictability in the stock and bond markets,"
Journal of Financial Economics, Elsevier, vol. 149(3), pages 349-377.
- Bao, Jack & Hou, Kewei & Zhang, Shaojun A., 2016. "Systemic Default and Return Predictability in the Stock and Bond Markets," Working Paper Series 2016-2, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Bao, Jack & Hou, Kewei & Zhang, Shaojun, 2023. "Systematic Default and Return Predictability in the Stock and Bond Markets," Working Paper Series 2023-13, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Hariom Tatsat & Ariye Shater, 2025. "Beyond the Black Box: Interpretability of LLMs in Finance," Papers 2505.24650, arXiv.org.
- Atawnah, Nader & Zaman, Rashid & Liu, Jia & Atawna, Thaer & Maghyereh, Aktham, 2023. "Does foreign competition affect corporate debt maturity structure? Evidence from import penetration," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Kai Ren, 2023. "Study on Intelligent Forecasting of Credit Bond Default Risk," Papers 2305.12142, arXiv.org, revised Jun 2023.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
- Md Talha Mohsin & Nabid Bin Nasim, 2025. "Explaining the Unexplainable: A Systematic Review of Explainable AI in Finance," Papers 2503.05966, arXiv.org, revised Nov 2025.
- Li, Fengyu & Yang, Mozhu & Zhang, Tong, 2023. "Does prospectus readability matter for bond issuance pricing? Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
- Yan Zhang & Lin Chen & Yixiang Tian, 2025. "A Method for Evaluating the Interpretability of Machine Learning Models in Predicting Bond Default Risk Based on LIME and SHAP," Papers 2502.19615, arXiv.org.
- Peng, Michael & Stern, Elisheva R. & Hu, Hanwen, 2025. "Forecasting China bond default with severe class-imbalanced data: A simple learning model with causal inference," Economic Modelling, Elsevier, vol. 144(C).
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
- Bei Cui & Li Ge & Priscila Grecov, 2025. "Bond defaults in China: Using machine learning to make predictions," International Review of Finance, International Review of Finance Ltd., vol. 25(1), March.
- Wang Lu & Bo Chen & Cuiqing Jiang & Zhao Wang & Yong Ding, 2024. "Corporate bond default prediction using bilateral topic information of credit rating reports," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-34, September.
- Zhou, Yimin & Wei, Xu, 2023. "Bond liquidity, debt maturity and bond risk premium," Finance Research Letters, Elsevier, vol. 54(C).
- Yasin Kursat Onder, 2023.
"Optimal GDP-indexed Bonds,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 747-777, December.
- Yasin K rsat nder, 2022. "Optimal GDP-indexed Bonds," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 22/1056, Ghent University, Faculty of Economics and Business Administration.
- Segal, Maxime & Ólafsson, Sverrir, 2023. "Overview of an alternative trigger for DCL," Finance Research Letters, Elsevier, vol. 58(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Das, Ronnie & Ahmed, Wasim & Sharma, Kshitij & Hardey, Mariann & Dwivedi, Yogesh K. & Zhang, Ziqi & Apostolidis, Chrysostomos & Filieri, Raffaele, 2024. "Towards the development of an explainable e-commerce fake review index: An attribute analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 382-400.
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
- Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
- Sahab Zandi & Kamesh Korangi & Juan C. Moreno-Paredes & Mar'ia 'Oskarsd'ottir & Christophe Mues & Cristi'an Bravo, 2025. "A Multimodal Approach to SME Credit Scoring Integrating Transaction and Ownership Networks," Papers 2510.09407, arXiv.org.
- Xu, Xin, 2013. "Forecasting Bankruptcy with Incomplete Information," MPRA Paper 55024, University Library of Munich, Germany, revised 31 Mar 2014.
- Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
- Georgios Chortareas & Apostolos G. Katsafados & Theodore Pelagidis & Chara Prassa, 2025. "Credit risk modelling within the euro area in the COVID‐19 period: Evidence from an ICAS framework," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 1074-1105, April.
- Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
- Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
- Gianfranco Lombardo & Mattia Pellegrino & George Adosoglou & Stefano Cagnoni & Panos M. Pardalos & Agostino Poggi, 2022. "Machine Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks," Future Internet, MDPI, vol. 14(8), pages 1-23, August.
- Huaming Du & Xingyan Chen & Yu Zhao & Qing Li & Fuzhen Zhuang & Fuji Ren & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised Mar 2025.
- Nadarajah, Sivathaasan & Duong, Huu Nhan & Ali, Searat & Liu, Benjamin & Huang, Allen, 2021. "Stock liquidity and default risk around the world," Journal of Financial Markets, Elsevier, vol. 55(C).
- Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024.
"Machine learning in bank merger prediction: A text-based approach,"
European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
- Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2021. "Machine Learning in U.S. Bank Merger Prediction: A Text-Based Approach," MPRA Paper 108272, University Library of Munich, Germany.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Antonio Pelaez-Verdet & Pilar Loscertales-Sanchez, 2021. "Key Ratios for Long-Term Prediction of Hotel Financial Distress and Corporate Default: Survival Analysis for an Economic Stagnation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
- Wang, Weiqing & Chen, Yuxi & Wang, Liukai & Xiong, Yu, 2025. "Developing the value of legal judgments of supply chain finance for credit risk prediction through novel ACWGAN-GPSA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-09-29 (Big Data)
- NEP-CMP-2025-09-29 (Computational Economics)
- NEP-FOR-2025-09-29 (Forecasting)
- NEP-RMG-2025-09-29 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10802. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2509.10802.html