IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.09407.html
   My bibliography  Save this paper

A Multimodal Approach to SME Credit Scoring Integrating Transaction and Ownership Networks

Author

Listed:
  • Sahab Zandi
  • Kamesh Korangi
  • Juan C. Moreno-Paredes
  • Mar'ia 'Oskarsd'ottir
  • Christophe Mues
  • Cristi'an Bravo

Abstract

Small and Medium-sized Enterprises (SMEs) are known to play a vital role in economic growth, employment, and innovation. However, they tend to face significant challenges in accessing credit due to limited financial histories, collateral constraints, and exposure to macroeconomic shocks. These challenges make an accurate credit risk assessment by lenders crucial, particularly since SMEs frequently operate within interconnected firm networks through which default risk can propagate. This paper presents and tests a novel approach for modelling the risk of SME credit, using a unique large data set of SME loans provided by a prominent financial institution. Specifically, our approach employs Graph Neural Networks to predict SME default using multilayer network data derived from common ownership and financial transactions between firms. We show that combining this information with traditional structured data not only improves application scoring performance, but also explicitly models contagion risk between companies. Further analysis shows how the directionality and intensity of these connections influence financial risk contagion, offering a deeper understanding of the underlying processes. Our findings highlight the predictive power of network data, as well as the role of supply chain networks in exposing SMEs to correlated default risk.

Suggested Citation

  • Sahab Zandi & Kamesh Korangi & Juan C. Moreno-Paredes & Mar'ia 'Oskarsd'ottir & Christophe Mues & Cristi'an Bravo, 2025. "A Multimodal Approach to SME Credit Scoring Integrating Transaction and Ownership Networks," Papers 2510.09407, arXiv.org.
  • Handle: RePEc:arx:papers:2510.09407
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.09407
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    2. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
    3. Massa, Massimo & Žaldokas, Alminas, 2017. "Information transfers among co-owned firms," Journal of Financial Intermediation, Elsevier, vol. 31(C), pages 77-92.
    4. Chengyue Huang & Yahe Yang, 2024. "Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction," Papers 2501.00034, arXiv.org.
    5. Spatareanu, Mariana & Manole, Vlad & Kabiri, Ali & Roland, Isabelle, 2023. "Bank default risk propagation along supply chains: evidence from the U.K," LSE Research Online Documents on Economics 117351, London School of Economics and Political Science, LSE Library.
    6. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    7. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    8. Senay Agca & Volodymyr Babich & John R. Birge & Jing Wu, 2022. "Credit Shock Propagation Along Supply Chains: Evidence from the CDS Market," Management Science, INFORMS, vol. 68(9), pages 6506-6538, September.
    9. Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
    10. Claudia Berloco & Gianmarco De Francisci Morales & Daniele Frassineti & Greta Greco & Hashani Kumarasinghe & Marco Lamieri & Emanuele Massaro & Arianna Miola & Shuyi Yang, 2021. "Predicting corporate credit risk: Network contagion via trade credit," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-29, April.
    11. Tabachová, Zlata & Diem, Christian & Borsos, András & Burger, Csaba & Thurner, Stefan, 2024. "Estimating the impact of supply chain network contagion on financial stability," Journal of Financial Stability, Elsevier, vol. 75(C).
    12. Óskarsdóttir, María & Bravo, Cristián, 2021. "Multilayer network analysis for improved credit risk prediction," Omega, Elsevier, vol. 105(C).
    13. Zandi, Sahab & Korangi, Kamesh & Óskarsdóttir, María & Mues, Christophe & Bravo, Cristián, 2025. "Attention-based dynamic multilayer graph neural networks for loan default prediction," European Journal of Operational Research, Elsevier, vol. 321(2), pages 586-599.
    14. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    15. William H. Beaver & Stefano Cascino & Maria Correia & Maureen F. McNichols, 2019. "Group Affiliation and Default Prediction," Management Science, INFORMS, vol. 65(8), pages 3559-3584, August.
    16. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    17. Matthew O. Jackson & Agathe Pernoud, 2021. "Systemic Risk in Financial Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 171-202, August.
    18. Dhaliwal, Dan & Judd, J. Scott & Serfling, Matthew & Shaikh, Sarah, 2016. "Customer concentration risk and the cost of equity capital," Journal of Accounting and Economics, Elsevier, vol. 61(1), pages 23-48.
    19. Beaver, William H & Cascino, Stefano & Correia, Maria & McNichols, Maureen F., 2019. "Group affiliation and default prediction," LSE Research Online Documents on Economics 88139, London School of Economics and Political Science, LSE Library.
    20. Lee, Neil & Sameen, Hiba & Cowling, Marc, 2015. "Access to finance for innovative SMEs since the financial crisis," Research Policy, Elsevier, vol. 44(2), pages 370-380.
    21. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    22. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    23. Sasan Bakhtiari & Robert Breunig & Lisa Magnani & Jacquelyn Zhang, 2020. "Financial Constraints and Small and Medium Enterprises: A Review," The Economic Record, The Economic Society of Australia, vol. 96(315), pages 506-523, December.
    24. Fenech, Jean Pierre & Vosgha, Hamed & Shafik, Salwa, 2015. "Loan default correlation using an Archimedean copula approach: A case for recalibration," Economic Modelling, Elsevier, vol. 47(C), pages 340-354.
    25. Lopez, Jose A. & Saidenberg, Marc R., 2000. "Evaluating credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.
    26. Yao Wang, 2016. "What are the biggest obstacles to growth of SMEs in developing countries? – An empirical evidence from an enterprise survey," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(3), pages 167-176, September.
    27. Ioannis Anagnostou & Sumit Sourabh & Drona Kandhai, 2018. "Incorporating Contagion in Portfolio Credit Risk Models Using Network Theory," Complexity, Hindawi, vol. 2018, pages 1-15, January.
    28. Spatareanu, Mariana & Manole, Vlad & Kabiri, Ali & Roland, Isabelle, 2023. "Bank default risk propagation along supply chains: Evidence from the U.K," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 813-831.
    29. Iori, Giulia & De Masi, Giulia & Precup, Ovidiu Vasile & Gabbi, Giampaolo & Caldarelli, Guido, 2008. "A network analysis of the Italian overnight money market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 259-278, January.
    30. Veronica Vinciotti & Elisa Tosetti & Francesco Moscone & Mark Lycett, 2019. "The effect of interfirm financial transactions on the credit risk of small and medium‐sized enterprises," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1205-1226, October.
    31. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    32. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zandi, Sahab & Korangi, Kamesh & Óskarsdóttir, María & Mues, Christophe & Bravo, Cristián, 2025. "Attention-based dynamic multilayer graph neural networks for loan default prediction," European Journal of Operational Research, Elsevier, vol. 321(2), pages 586-599.
    2. Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
    3. Kozodoi, Nikita & Lessmann, Stefan & Alamgir, Morteza & Moreira-Matias, Luis & Papakonstantinou, Konstantinos, 2025. "Fighting sampling bias: A framework for training and evaluating credit scoring models," European Journal of Operational Research, Elsevier, vol. 324(2), pages 616-628.
    4. Ma, Xuejiao & Che, Tianqi & Jiang, Qichuan, 2025. "A three-stage prediction model for firm default risk: An integration of text sentiment analysis," Omega, Elsevier, vol. 131(C).
    5. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    6. Sahab Zandi & Kamesh Korangi & Mar'ia 'Oskarsd'ottir & Christophe Mues & Cristi'an Bravo, 2024. "Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction," Papers 2402.00299, arXiv.org, revised Jun 2024.
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024. "Machine learning in bank merger prediction: A text-based approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
    9. Xu, Yong & Kou, Gang & Ergu, Daji, 2025. "Profit-based uncertainty estimation with application to credit scoring," European Journal of Operational Research, Elsevier, vol. 325(2), pages 303-316.
    10. Wang, Weiqing & Chen, Yuxi & Wang, Liukai & Xiong, Yu, 2025. "Developing the value of legal judgments of supply chain finance for credit risk prediction through novel ACWGAN-GPSA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    11. Yi Lu & Aifan Ling & Chaoqun Wang & Yaxin Xu, 2025. "Why Bonds Fail Differently? Explainable Multimodal Learning for Multi-Class Default Prediction," Papers 2509.10802, arXiv.org.
    12. Xinpeng Geng & Bing Han & Debao Yang & Junren Zhao, 2024. "Credit risk contagion of supply chain finance: An empirical analysis of supply chain listed companies," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-22, August.
    13. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    14. Kasper Regenburg & Morten Nicklas Bigler Seitz, 2021. "Criminals, bankruptcy, and cost of debt," Review of Accounting Studies, Springer, vol. 26(3), pages 1004-1045, September.
    15. Lian, Yili, 2017. "Financial distress and customer-supplier relationships," Journal of Corporate Finance, Elsevier, vol. 43(C), pages 397-406.
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    17. Georgios Chortareas & Apostolos G. Katsafados & Theodore Pelagidis & Chara Prassa, 2025. "Credit risk modelling within the euro area in the COVID‐19 period: Evidence from an ICAS framework," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 1074-1105, April.
    18. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    19. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    20. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.09407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.