IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.10663.html
   My bibliography  Save this paper

Higher-order Gini indices: An axiomatic approach

Author

Listed:
  • Xia Han
  • Ruodu Wang
  • Qinyu Wu

Abstract

Via an axiomatic approach, we characterize the family of n-th order Gini deviation, defined as the expected range over n independent draws from a distribution, to quantify joint dispersion across multiple observations. This extends the classical Gini deviation, which relies solely on pairwise comparisons. Our generalization grows increasingly sensitive to tail inequality as n increases, offering a more nuanced view of distributional extremes. We show that these higher-order Gini deviations admit a Choquet integral representation, inheriting the desirable properties of coherent deviation measures. Furthermore, we prove that both the n-th order Gini deviation and its normalized version, the n-th order Gini coefficient, are n-observation elicitable, facilitating rigorous backtesting. Empirical analysis using World Inequality Database data reveals that higher-order Gini coefficients detect disparities obscured by the classical Gini coefficient, particularly in cases of extreme income or wealth concentration. Our results establish higher-order Gini indices as valuable complementary tools for robust inequality assessment.

Suggested Citation

  • Xia Han & Ruodu Wang & Qinyu Wu, 2025. "Higher-order Gini indices: An axiomatic approach," Papers 2508.10663, arXiv.org.
  • Handle: RePEc:arx:papers:2508.10663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.10663
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.10663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.