IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.09634.html
   My bibliography  Save this paper

Artificial Intelligence, Domain AI Readiness, and Firm Productivity

Author

Listed:
  • Sipeng Zeng
  • Xiaoning Wang
  • Tianshu Sun

Abstract

Although Artificial Intelligence (AI) holds great promise for enhancing innovation and productivity, many firms struggle to realize its benefits. We investigate why some firms and industries succeed with AI while others do not, focusing on the degree to which an industrial domain is technologically integrated with AI, which we term "domain AI readiness". Using panel data on Chinese listed firms from 2016 to 2022, we examine how the interaction between firm-level AI capabilities and domain AI readiness affects firm performance. We create novel constructs from patent data and measure the domain AI readiness of a specific domain by analyzing the co-occurrence of four-digit International Patent Classification (IPC4) codes related to AI with the specific domain across all patents in that domain. Our findings reveal a strong complementarity: AI capabilities yield greater productivity and innovation gains when deployed in domains with higher AI readiness, whereas benefits are limited in domains that are technologically unprepared or already obsolete. These results remain robust when using local AI policy initiatives as instrumental variables. Further analysis shows that this complementarity is driven by external advances in domain-AI integration, rather than firms' own strategic pivots. Time-series analysis of IPC4 co-occurrence patterns further suggests that improvements in domain AI readiness stem primarily from the academic advancements of AI in specific domains.

Suggested Citation

  • Sipeng Zeng & Xiaoning Wang & Tianshu Sun, 2025. "Artificial Intelligence, Domain AI Readiness, and Firm Productivity," Papers 2508.09634, arXiv.org.
  • Handle: RePEc:arx:papers:2508.09634
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.09634
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.09634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.