IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.00078.html
   My bibliography  Save this paper

Evaluating COVID 19 Feature Contributions to Bitcoin Return Forecasting: Methodology Based on LightGBM and Genetic Optimization

Author

Listed:
  • Imen Mahmoud
  • Andrei Velichko

Abstract

This study proposes a novel methodological framework integrating a LightGBM regression model and genetic algorithm (GA) optimization to systematically evaluate the contribution of COVID-19-related indicators to Bitcoin return prediction. The primary objective was not merely to forecast Bitcoin returns but rather to determine whether including pandemic-related health data significantly enhances prediction accuracy. A comprehensive dataset comprising daily Bitcoin returns and COVID-19 metrics (vaccination rates, hospitalizations, testing statistics) was constructed. Predictive models, trained with and without COVID-19 features, were optimized using GA over 31 independent runs, allowing robust statistical assessment. Performance metrics (R2, RMSE, MAE) were statistically compared through distribution overlaps and Mann-Whitney U tests. Permutation Feature Importance (PFI) analysis quantified individual feature contributions. Results indicate that COVID-19 indicators significantly improved model performance, particularly in capturing extreme market fluctuations (R2 increased by 40%, RMSE decreased by 2%, both highly significant statistically). Among COVID-19 features, vaccination metrics, especially the 75th percentile of fully vaccinated individuals, emerged as dominant predictors. The proposed methodology extends existing financial analytics tools by incorporating public health signals, providing investors and policymakers with refined indicators to navigate market uncertainty during systemic crises.

Suggested Citation

  • Imen Mahmoud & Andrei Velichko, 2025. "Evaluating COVID 19 Feature Contributions to Bitcoin Return Forecasting: Methodology Based on LightGBM and Genetic Optimization," Papers 2508.00078, arXiv.org.
  • Handle: RePEc:arx:papers:2508.00078
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.00078
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.00078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.