Author
Abstract
Networks are central to many economic and organizational applications, including workplace team formation, social platform recommendations, and classroom friendship development. In these settings, networks are modeled as graphs, with agents as nodes, agent pairs as edges, and edge weights capturing pairwise production or interaction outcomes. This paper develops an adaptive, or \textit{online}, policy that learns to form increasingly effective networks as data accumulates over time, progressively improving total network output measured by the sum of edge weights. Our approach builds on the weighted stochastic block model (WSBM), which captures agents' unobservable heterogeneity through discrete latent types and models their complementarities in a flexible, nonparametric manner. We frame the online network formation problem as a non-standard \textit{batched multi-armed bandit}, where each type pair corresponds to an arm, and pairwise reward depends on type complementarity. This strikes a balance between exploration -- learning latent types and complementarities -- and exploitation -- forming high-weighted networks. We establish two key results: a \textit{batched local asymptotic normality} result for the WSBM and an asymptotic equivalence between maximum likelihood and variational estimates of the intractable likelihood. Together, they provide a theoretical foundation for treating variational estimates as normal signals, enabling principled Bayesian updating across batches. The resulting posteriors are then incorporated into a tailored maximum-weight matching problem to determine the policy for the next batch. Simulations show that our algorithm substantially improves outcomes within a few batches, yields increasingly accurate parameter estimates, and remains effective even in nonstationary settings with evolving agent pools.
Suggested Citation
Yan Xu & Bo Zhou, 2025.
"Batched Adaptive Network Formation,"
Papers
2507.18961, arXiv.org.
Handle:
RePEc:arx:papers:2507.18961
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.