Author
Listed:
- Jiayi Guo
- Zhiyu Quan
- Linfeng Zhang
Abstract
The lack of high-quality public cyber incident data limits empirical research and predictive modeling for cyber risk assessment. This challenge persists due to the reluctance of companies to disclose incidents that could damage their reputation or investor confidence. Therefore, from an actuarial perspective, potential resolutions conclude two aspects: the enhancement of existing cyber incident datasets and the implementation of advanced modeling techniques to optimize the use of the available data. A review of existing data-driven methods highlights a significant lack of entity-specific organizational features in publicly available datasets. To address this gap, we propose a novel InsurTech framework that enriches cyber incident data with entity-specific attributes. We develop various machine learning (ML) models: a multilabel classification model to predict the occurrence of cyber incident types (e.g., Privacy Violation, Data Breach, Fraud and Extortion, IT Error, and Others) and a multioutput regression model to estimate their annual frequencies. While classifier and regressor chains are implemented to explore dependencies among cyber incident types as well, no significant correlations are observed in our datasets. Besides, we apply multiple interpretable ML techniques to identify and cross-validate potential risk factors developed by InsurTech across ML models. We find that InsurTech empowered features enhance prediction occurrence and frequency estimation robustness compared to only using conventional risk factors. The framework generates transparent, entity-specific cyber risk profiles, supporting customized underwriting and proactive cyber risk mitigation. It provides insurers and organizations with data-driven insights to support decision-making and compliance planning.
Suggested Citation
Jiayi Guo & Zhiyu Quan & Linfeng Zhang, 2025.
"Entity-Specific Cyber Risk Assessment using InsurTech Empowered Risk Factors,"
Papers
2507.08193, arXiv.org, revised Jul 2025.
Handle:
RePEc:arx:papers:2507.08193
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.08193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.