IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.00853.html
   My bibliography  Save this paper

Ranking Quantilized Mean-Field Games with an Application to Early-Stage Venture Investments

Author

Listed:
  • Rinel Foguen Tchuendom
  • Dena Firoozi
  • Mich`ele Breton

Abstract

Quantilized mean-field game models involve quantiles of the population's distribution. We study a class of such games with a capacity for ranking games, where the performance of each agent is evaluated based on its terminal state relative to the population's $\alpha$-quantile value, $\alpha \in (0,1)$. This evaluation criterion is designed to select the top $(1-\alpha)\%$ performing agents. We provide two formulations for this competition: a target-based formulation and a threshold-based formulation. In the former and latter formulations, to satisfy the selection condition, each agent aims for its terminal state to be \textit{exactly} equal and \textit{at least} equal to the population's $\alpha$-quantile value, respectively. For the target-based formulation, we obtain an analytic solution and demonstrate the $\epsilon$-Nash property for the asymptotic best-response strategies in the $N$-player game. Specifically, the quantilized mean-field consistency condition is expressed as a set of forward-backward ordinary differential equations, characterizing the $\alpha$-quantile value at equilibrium. For the threshold-based formulation, we obtain a semi-explicit solution and numerically solve the resulting quantilized mean-field consistency condition. Subsequently, we propose a new application in the context of early-stage venture investments, where a venture capital firm financially supports a group of start-up companies engaged in a competition over a finite time horizon, with the goal of selecting a percentage of top-ranking ones to receive the next round of funding at the end of the time horizon. We present the results and interpretations of numerical experiments for both formulations discussed in this context and show that the target-based formulation provides a very good approximation for the threshold-based formulation.

Suggested Citation

  • Rinel Foguen Tchuendom & Dena Firoozi & Mich`ele Breton, 2025. "Ranking Quantilized Mean-Field Games with an Application to Early-Stage Venture Investments," Papers 2507.00853, arXiv.org.
  • Handle: RePEc:arx:papers:2507.00853
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.00853
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.00853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.