IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.07231.html
   My bibliography  Save this paper

Mean Field Portfolio Games with Epstein-Zin Preferences

Author

Listed:
  • Guanxing Fu
  • Ulrich Horst

Abstract

We study mean field portfolio games under Epstein-Zin preferences, which naturally encompass the classical time-additive power utility as a special case. In a general non-Markovian framework, we establish a uniqueness result by proving a one-to-one correspondence between Nash equilibria and the solutions to a class of BSDEs. A key ingredient in our approach is a necessary stochastic maximum principle tailored to Epstein-Zin utility and a nonlinear transformation. In the deterministic setting, we further derive an explicit closed-form solution for the equilibrium investment and consumption policies.

Suggested Citation

  • Guanxing Fu & Ulrich Horst, 2025. "Mean Field Portfolio Games with Epstein-Zin Preferences," Papers 2505.07231, arXiv.org.
  • Handle: RePEc:arx:papers:2505.07231
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.07231
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    2. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. II: Existence, uniqueness and verification for ϑ ∈ ( 0 , 1 ) $\vartheta \in (0,1)$," Finance and Stochastics, Springer, vol. 27(1), pages 159-188, January.
    3. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.
    4. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    5. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. I: Foundations," Finance and Stochastics, Springer, vol. 27(1), pages 127-158, January.
    6. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    7. Yaroslav Melnyk & Johannes Muhle‐Karbe & Frank Thomas Seifried, 2020. "Lifetime investment and consumption with recursive preferences and small transaction costs," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1135-1167, July.
    8. René Carmona & Jean-Pierre Fouque & Seyyed Mostafa Mousavi & Li-Hsien Sun, 2018. "Systemic Risk and Stochastic Games with Delay," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 366-399, November.
    9. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    10. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    11. Guanxing Fu & Paulwin Graewe & Ulrich Horst & Alexandre Popier, 2021. "A Mean Field Game of Optimal Portfolio Liquidation," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1250-1281, November.
    12. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    13. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    14. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.
    15. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    16. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    17. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    18. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    19. Anis Matoussi & Hao Xing, 2018. "Convex duality for Epstein–Zin stochastic differential utility," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 991-1019, October.
    20. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, September.
    21. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    22. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    23. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    24. Dianetti, Jodi & Riedel, Frank & Stanza, Lorenzo, 2024. "Optimal consumption and Investment under Relative Performance Criteria with Epstein-Zin Utility," Center for Mathematical Economics Working Papers 685, Center for Mathematical Economics, Bielefeld University.
    25. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    26. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    27. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    2. Kexin Chen & Kyunghyun Park & Hoi Ying Wong, 2024. "Robust dividend policy: Equivalence of Epstein-Zin and Maenhout preferences," Papers 2406.12305, arXiv.org, revised Apr 2025.
    3. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    4. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    5. Zixin Feng & Dejian Tian & Harry Zheng, 2024. "Consumption-investment optimization with Epstein-Zin utility in unbounded non-Markovian markets," Papers 2407.19995, arXiv.org, revised May 2025.
    6. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    7. David Hobson & Martin Herdegen & Joseph Jerome, 2021. "The Infinite Horizon Investment-Consumption Problem for Epstein-Zin Stochastic Differential Utility," Papers 2107.06593, arXiv.org.
    8. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2024. "Optimal consumption for recursive preferences with local substitution — the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    9. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.
    10. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. I: Foundations," Finance and Stochastics, Springer, vol. 27(1), pages 127-158, January.
    11. Martin Herdegen & David Hobson & Joseph Jerome, 2021. "Proper solutions for Epstein-Zin Stochastic Differential Utility," Papers 2112.06708, arXiv.org.
    12. Michael Monoyios & Oleksii Mostovyi, 2022. "Stability of the Epstein-Zin problem," Papers 2208.09895, arXiv.org, revised Apr 2023.
    13. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    14. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    15. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    16. Martin Herdegen & David Hobson & Joseph Jerome, 2023. "The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. II: Existence, uniqueness and verification for ϑ ∈ ( 0 , 1 ) $\vartheta \in (0,1)$," Finance and Stochastics, Springer, vol. 27(1), pages 159-188, January.
    17. Yaroslav Melnyk & Johannes Muhle‐Karbe & Frank Thomas Seifried, 2020. "Lifetime investment and consumption with recursive preferences and small transaction costs," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1135-1167, July.
    18. Anis Matoussi & Hao Xing, 2016. "Convex duality for stochastic differential utility," Papers 1601.03562, arXiv.org.
    19. Dianetti, Jodi & Riedel, Frank & Stanza, Lorenzo, 2024. "Optimal consumption and Investment under Relative Performance Criteria with Epstein-Zin Utility," Center for Mathematical Economics Working Papers 685, Center for Mathematical Economics, Bielefeld University.
    20. Kraft, Holger & Munk, Claus & Weiss, Farina, 2022. "Bequest motives in consumption-portfolio decisions with recursive utility," Journal of Banking & Finance, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.07231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.