IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i1d10.1007_s00780-016-0316-0.html
   My bibliography  Save this article

Optimal consumption and investment with Epstein–Zin recursive utility

Author

Listed:
  • Holger Kraft

    () (Goethe University)

  • Thomas Seiferling

    () (University of Kaiserslautern)

  • Frank Thomas Seifried

    () (University of Trier)

Abstract

Abstract We study continuous-time optimal consumption and investment with Epstein–Zin recursive preferences in incomplete markets. We develop a novel approach that rigorously constructs the solution of the associated Hamilton–Jacobi–Bellman equation by a fixed point argument and makes it possible to compute both the indirect utility and, more importantly, optimal strategies. Based on these results, we also establish a fast and accurate method for numerical computations. Our setting is not restricted to affine asset price dynamics; we only require boundedness of the underlying model coefficients.

Suggested Citation

  • Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:1:d:10.1007_s00780-016-0316-0
    DOI: 10.1007/s00780-016-0316-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-016-0316-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    3. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    4. Mark Schroder & Costis Skiadas, 2008. "Optimality And State Pricing In Constrained Financial Markets With Recursive Utility Under Continuous And Discontinuous Information," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 199-238, April.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Ma, Jin & Yin, Hong & Zhang, Jianfeng, 2012. "On non-Markovian forward–backward SDEs and backward stochastic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3980-4004.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.
    9. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    10. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    11. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    12. Schroder, Mark & Skiadas, Costis, 2003. "Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 155-202, December.
    13. Antonelli, Fabio, 1996. "Stability of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 103-114, March.
    14. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 433-495.
    15. Kreps, David M. & Porteus, Evan L., 1979. "Temporal von neumann-morgenstern and induced preferences," Journal of Economic Theory, Elsevier, vol. 20(1), pages 81-109, February.
    16. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 63-91, March.
    17. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-969, July.
    18. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    19. Marinacci, Massimo & Montrucchio, Luigi, 2010. "Unique solutions for stochastic recursive utilities," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1776-1804, September.
    20. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    21. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    22. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    23. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    24. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-017-0353-3 is not listed on IDEAS
    2. repec:eee:ecofin:v:48:y:2019:i:c:p:364-384 is not listed on IDEAS
    3. repec:eee:dyncon:v:94:y:2018:i:c:p:242-256 is not listed on IDEAS
    4. repec:eee:dyncon:v:98:y:2019:i:c:p:40-59 is not listed on IDEAS
    5. repec:eee:jetheo:v:179:y:2019:i:c:p:1-56 is not listed on IDEAS
    6. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on Random Horizons," Papers 1903.08782, arXiv.org.
    7. Sahar Albosaily & Serguei Pergamenshchikov, 2018. "Optimal investment and consumption for Ornstein-Uhlenbeck spread financial markets with logarithmic utility," Papers 1809.08139, arXiv.org.

    More about this item

    Keywords

    Consumption-portfolio choice; Asset pricing; Stochastic differential utility; Incomplete markets; Fixed point approach; FBSDE;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:1:d:10.1007_s00780-016-0316-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.