IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On non-Markovian forward–backward SDEs and backward stochastic PDEs

Listed author(s):
  • Ma, Jin
  • Yin, Hong
  • Zhang, Jianfeng
Registered author(s):

    In this paper, we establish an equivalence relationship between the wellposedness of forward–backward SDEs (FBSDEs) with random coefficients and that of backward stochastic PDEs (BSPDEs). Using the notion of the “decoupling random field”, originally observed in the well-known Four Step Scheme (Ma et al., 1994 [13]) and recently elaborated by Ma et al. (2010) [14], we show that, under certain conditions, the FBSDE is wellposed if and only if this random field is a Sobolev solution to a degenerate quasilinear BSPDE, extending the existing non-linear Feynman–Kac formula to the random coefficient case. Some further properties of the BSPDEs, such as comparison theorem and stability, will also be discussed.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 122 (2012)
    Issue (Month): 12 ()
    Pages: 3980-4004

    in new window

    Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:3980-4004
    DOI: 10.1016/
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hu, Ying & Ma, JinJin, 2004. "Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 23-51, July.
    2. Ma, Jin & Yong, Jiongmin, 1997. "Adapted solution of a degenerate backward spde, with applications," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 59-84, October.
    3. Wu, Zhen & Xu, Mingyu, 2009. "Comparison theorems for forward backward SDEs," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 426-435, February.
    4. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:3980-4004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.