Author
Listed:
- AmirEmad Ghassami
- James M. Robins
- Andrea Rotnitzky
Abstract
In various statistical settings, the goal is to estimate a function which is restricted by the statistical model only through a conditional moment restriction. Prominent examples include the nonparametric instrumental variable framework for estimating the structural function of the outcome variable, and the proximal causal inference framework for estimating the bridge functions. A common strategy in the literature is to find the minimizer of the projected mean squared error. However, this approach can be sensitive to misspecification or slow convergence rate of the estimators of the involved nuisance components. In this work, we propose a debiased estimation strategy based on the influence function of a modification of the projected error and demonstrate its finite-sample convergence rate. Our proposed estimator possesses a second-order bias with respect to the involved nuisance functions and a desirable robustness property with respect to the misspecification of one of the nuisance functions. The proposed estimator involves a hyper-parameter, for which the optimal value depends on potentially unknown features of the underlying data-generating process. Hence, we further propose a hyper-parameter selection approach based on cross-validation and derive an error bound for the resulting estimator. This analysis highlights the potential rate loss due to hyper-parameter selection and underscore the importance and advantages of incorporating debiasing in this setting. We also study the application of our approach to the estimation of regular parameters in a specific parameter class, which are linear functionals of the solutions to the conditional moment restrictions and provide sufficient conditions for achieving root-n consistency using our debiased estimator.
Suggested Citation
AmirEmad Ghassami & James M. Robins & Andrea Rotnitzky, 2025.
"Debiased Ill-Posed Regression,"
Papers
2505.20787, arXiv.org.
Handle:
RePEc:arx:papers:2505.20787
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.20787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.