Explainable AI in Spatial Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- A. Stewart Fotheringham & Ziqi Li & Levi John Wolf, 2021. "Scale, Context, and Heterogeneity: A Spatial Analytical Perspective on the 2016 U.S. Presidential Election," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(6), pages 1602-1621, September.
- A. Stewart Fotheringham & Ziqi Li, 2023. "Measuring the Unmeasurable: Models of Geographical Context," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 113(10), pages 2269-2286, November.
- Wenwen Li & Chia-Yu Hsu & Maosheng Hu, 2021. "Tobler’s First Law in GeoAI: A Spatially Explicit Deep Learning Model for Terrain Feature Detection under Weak Supervision," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(7), pages 1887-1905, November.
- Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
- Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
- Zhang, Xiaojian & Zhou, Zhengze & Xu, Yiming & Zhao, Xilei, 2024. "Analyzing spatial heterogeneity of ridesourcing usage determinants using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 114(C).
- Ziqi Li, 2024. "GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 114(7), pages 1365-1385, August.
- Peng, Zhipeng & Ji, Hao & Yuan, RenTeng & Wang, Yonggang & Easa, Said M. & Wang, Chenzhu & Cui, Hongshuai & Zhao, Xiatong, 2025. "Modeling and spatial analysis of heavy-duty truck CO2 using travel activities," Journal of Transport Geography, Elsevier, vol. 124(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Perez-Aguilar, Lidia Yadira & Plata-Rocha, Wenseslao & Monjardin-Armenta, Sergio Alberto & López-Osorio, Ramon Fernando, 2025. "Implementation of a web-based system for monitoring and simulation of arid zones in northwestern Mexico. Region of Mexico," Ecological Modelling, Elsevier, vol. 501(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oshan, Taylor M. & Kang, Wei, 2024. "Scale and Correlation in Multiscale Geographically Weighted Regression (MGWR)," OSF Preprints cujby, Center for Open Science.
- Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
- Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
- repec:osf:osfxxx:cujby_v1 is not listed on IDEAS
- Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
- Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
- Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
- Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
- Layla Höckerstedt & Elina Numminen & Ben Ashby & Mike Boots & Anna Norberg & Anna-Liisa Laine, 2022. "Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- repec:osf:socarx:nkydt_v1 is not listed on IDEAS
- Jussi Jousimo & Otso Ovaskainen, 2016. "A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
- Taylor M. Oshan & Levi J. Wolf & Mehak Sachdeva & Sarah Bardin & A. Stewart Fotheringham, 2022. "A scoping review on the multiplicity of scale in spatial analysis," Journal of Geographical Systems, Springer, vol. 24(3), pages 293-324, July.
- Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
- Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
- repec:osf:socarx:qzjwb_v1 is not listed on IDEAS
- Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
- Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
- Damaris K. Kinyoki & Samuel O. Manda & Grainne M. Moloney & Elijah O. Odundo & James A. Berkley & Abdisalan M. Noor & Ngianga-Bakwin Kandala, 2017. "Modelling the Ecological Comorbidity of Acute Respiratory Infection, Diarrhoea and Stunting among Children Under the Age of 5 Years in Somalia," International Statistical Review, International Statistical Institute, vol. 85(1), pages 164-176, April.
- Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Daniela Castro‐Camilo & Raphaël Huser & Håvard Rue, 2022. "Practical strategies for generalized extreme value‐based regression models for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
- Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
- C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
- Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-05-26 (Big Data)
- NEP-CMP-2025-05-26 (Computational Economics)
- NEP-GEO-2025-05-26 (Economic Geography)
- NEP-GTH-2025-05-26 (Game Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.00591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.