IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.05639.html
   My bibliography  Save this paper

DBOT: Artificial Intelligence for Systematic Long-Term Investing

Author

Listed:
  • Vasant Dhar
  • Jo~ao Sedoc

Abstract

Long-term investing was previously seen as requiring human judgment. With the advent of generative artificial intelligence (AI) systems, automated systematic long-term investing is now feasible. In this paper, we present DBOT, a system whose goal is to reason about valuation like Aswath Damodaran, who is a unique expert in the investment arena in terms of having published thousands of valuations on companies in addition to his numerous writings on the topic, which provide ready training data for an AI system. DBOT can value any publicly traded company. DBOT can also be back-tested, making its behavior and performance amenable to scientific inquiry. We compare DBOT to its analytic parent, Damodaran, and highlight the research challenges involved in raising its current capability to that of Damodaran's. Finally, we examine the implications of DBOT-like AI agents for the financial industry, especially how they will impact the role of human analysts in valuation.

Suggested Citation

  • Vasant Dhar & Jo~ao Sedoc, 2025. "DBOT: Artificial Intelligence for Systematic Long-Term Investing," Papers 2504.05639, arXiv.org.
  • Handle: RePEc:arx:papers:2504.05639
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.05639
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Boyu Zhang & Hongyang Yang & Xiao-Yang Liu, 2023. "Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models," Papers 2306.12659, arXiv.org.
    3. Stefano Giglio & Bryan Kelly & Dacheng Xiu, 2022. "Factor Models, Machine Learning, and Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 337-368, November.
    4. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    5. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Tianyu Zhou & Pinqiao Wang & Yilin Wu & Hongyang Yang, 2024. "FinRobot: AI Agent for Equity Research and Valuation with Large Language Models," Papers 2411.08804, arXiv.org.
    7. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. Douglas (DJ) Fairhurst & Daniel Greene, 2025. "How Much Does ChatGPT Know about Finance?," Financial Analysts Journal, Taylor & Francis Journals, vol. 81(1), pages 12-32, January.
    11. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    2. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    3. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    4. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    5. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    6. Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    8. Alex R. Horenstein, 2021. "The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha," Management Science, INFORMS, vol. 67(6), pages 3655-3673, June.
    9. Hoang, Khoa & Huang, Ronghong & Truong, Helen, 2023. "Resurrecting the market factor: A case of data mining across international markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    10. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    11. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    12. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    13. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2020. "Estimation of large dimensional conditional factor models in finance," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 219-282, Elsevier.
    14. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    15. Cao, Ji & Rieger, Marc Oliver & Zhao, Lei, 2023. "Safety first, loss probability, and the cross section of expected stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 345-369.
    16. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    17. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
    18. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    19. Jozef Barunik & Matej Nevrla, 2022. "Common Idiosyncratic Quantile Risk," Papers 2208.14267, arXiv.org, revised Nov 2024.
    20. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    21. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.05639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.