IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.03211.html
   My bibliography  Save this paper

Persuasive Calibration

Author

Listed:
  • Yiding Feng
  • Wei Tang

Abstract

We introduce and study the persuasive calibration problem, where a principal aims to provide trustworthy predictions about underlying events to a downstream agent to make desired decisions. We adopt the standard calibration framework that regulates predictions to be unbiased conditional on their own value, and thus, they can reliably be interpreted at the face value by the agent. Allowing a small calibration error budget, we aim to answer the following question: what is and how to compute the optimal predictor under this calibration error budget, especially when there exists incentive misalignment between the principal and the agent? We focus on standard Lt-norm Expected Calibration Error (ECE) metric. We develop a general framework by viewing predictors as post-processed versions of perfectly calibrated predictors. Using this framework, we first characterize the structure of the optimal predictor. Specifically, when the principal's utility is event-independent and for L1-norm ECE, we show: (1) the optimal predictor is over-(resp. under-) confident for high (resp. low) true expected outcomes, while remaining perfectly calibrated in the middle; (2) the miscalibrated predictions exhibit a collinearity structure with the principal's utility function. On the algorithmic side, we provide a FPTAS for computing approximately optimal predictor for general principal utility and general Lt-norm ECE. Moreover, for the L1- and L-Infinity-norm ECE, we provide polynomial-time algorithms that compute the exact optimal predictor.

Suggested Citation

  • Yiding Feng & Wei Tang, 2025. "Persuasive Calibration," Papers 2504.03211, arXiv.org.
  • Handle: RePEc:arx:papers:2504.03211
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.03211
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    2. Piotr Dworczak & Giorgio Martini, 2019. "The Simple Economics of Optimal Persuasion," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 1993-2048.
    3. Santiago R. Balseiro & Omar Besbes & Francisco Castro, 2024. "Mechanism Design Under Approximate Incentive Compatibility," Operations Research, INFORMS, vol. 72(1), pages 355-372, January.
    4. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    5. Guo, Yingni & Shmaya, Eran, 2021. "Costly miscalibration," Theoretical Economics, Econometric Society, vol. 16(2), May.
    6. Elliot Lipnowski & Doron Ravid, 2020. "Cheap Talk With Transparent Motives," Econometrica, Econometric Society, vol. 88(4), pages 1631-1660, July.
    7. Jason D. Hartline & Brendan Lucier, 2015. "Non-optimal Mechanism Design," American Economic Review, American Economic Association, vol. 105(10), pages 3102-3124, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emir Kamenica & Kyungmin Kim & Andriy Zapechelnyuk, 2021. "Bayesian persuasion and information design: perspectives and open issues," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(3), pages 701-704, October.
    2. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    3. Onuchic, Paula & Ray, Debraj, 2023. "Conveying value via categories," Theoretical Economics, Econometric Society, vol. 18(4), November.
    4. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    5. Alexander V. Kolesnikov & Fedor Sandomirskiy & Aleh Tsyvinski & Alexander P. Zimin, 2022. "Beckmann's approach to multi-item multi-bidder auctions," Papers 2203.06837, arXiv.org, revised Sep 2022.
    6. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    8. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    9. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    10. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    11. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    12. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    13. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
    14. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    15. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    16. Juuso Toikka & Akhil Vohra & Rakesh Vohra, 2022. "Bayesian Persuasion: Reduced Form Approach," PIER Working Paper Archive 22-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Stephen Hora & Erim Kardeş, 2015. "Calibration, sharpness and the weighting of experts in a linear opinion pool," Annals of Operations Research, Springer, vol. 229(1), pages 429-450, June.
    18. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    19. Andriy Zapechelnyuk, 2023. "On the equivalence of information design by uninformed and informed principals," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(4), pages 1051-1067, November.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.03211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.