IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14940.html
   My bibliography  Save this paper

Linear programming approach to partially identified econometric models

Author

Listed:
  • Andrei Voronin

Abstract

Sharp bounds on partially identified parameters are often given by the values of linear programs (LPs). This paper introduces a novel estimator of the LP value. Unlike existing procedures, our estimator is root-n-consistent, pointwise in the probability measure, whenever the population LP is feasible and finite. Our estimator is valid under point-identification, over-identifying constraints, and solution multiplicity. Turning to uniformity properties, we prove that the LP value cannot be uniformly consistently estimated without restricting the set of possible distributions. We then show that our estimator achieves uniform consistency under a condition that is minimal for the existence of any such estimator. We obtain computationally efficient, asymptotically normal inference procedure with exact asymptotic coverage at any fixed probability measure. To complement our estimation results, we derive LP sharp bounds in a general identification setting. We apply our findings to estimating returns to education. To that end, we propose the conditionally monotone IV assumption (cMIV) that tightens the classical monotone IV (MIV) bounds and is testable under a mild regularity condition. Under cMIV, university education in Colombia is shown to increase the average wage by at least $5.5\%$, whereas classical conditions fail to yield an informative bound.

Suggested Citation

  • Andrei Voronin, 2025. "Linear programming approach to partially identified econometric models," Papers 2503.14940, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14940
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14940
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Kline & Melissa Tartari, 2016. "Bounding the Labor Supply Responses to a Randomized Welfare Experiment: A Revealed Preference Approach," American Economic Review, American Economic Association, vol. 106(4), pages 972-1014, April.
    2. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    3. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    4. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    5. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    6. Kamila Cygan‐Rehm & Daniel Kuehnle & Michael Oberfichtner, 2017. "Bounding the causal effect of unemployment on mental health: Nonparametric evidence from four countries," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1844-1861, December.
    7. Jeremiah Richey, 2016. "An Odd Couple: Monotone Instrumental Variables and Binary Treatments," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1099-1110, June.
    8. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," NBER Working Papers 4483, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    2. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    3. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Isaiah Andrews & Jonathan Roth & Ariel Pakes, 2023. "Inference for Linear Conditional Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(6), pages 2763-2791.
    5. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2022. "Identification Of Regression Models With A Misclassified And Endogenous Binary Regressor," Econometric Theory, Cambridge University Press, vol. 38(6), pages 1117-1139, December.
    6. Vira Semenova, 2023. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters," Papers 2303.00982, arXiv.org, revised May 2025.
    7. Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
    8. Rui Wang, 2023. "Point Identification of LATE with Two Imperfect Instruments," Papers 2303.13795, arXiv.org.
    9. Bulat Gafarov, 2019. "Simple subvector inference on sharp identified set in affine models," Papers 1904.00111, arXiv.org, revised Jul 2024.
    10. Robin Boadway & Nicolas Marceau & Maurice Marchand, 1996. "Issues in decentralizing the provision of education," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 3(3), pages 311-327, July.
    11. Gagliardi, Luisa & Moretti, Enrico & Serafinelli, Michel, 2023. "The World's Rust Belts: The Heterogeneous Effects of Deindustrialization on 1,993 Cities in Six Countries," IZA Discussion Papers 16648, Institute of Labor Economics (IZA).
    12. van Elk, Roel & van der Steeg, Marc & Webbink, Dinand, 2011. "Does the timing of tracking affect higher education completion?," Economics of Education Review, Elsevier, vol. 30(5), pages 1009-1021, October.
    13. Boerner, Lars & Severgnini, Battista, 2015. "Time for growth," LSE Research Online Documents on Economics 64495, London School of Economics and Political Science, LSE Library.
    14. Constantine, J.M., 1994. "Measuring the Effect of Attending Historically Black Colleges and Universities on Future Wages of Black Students," Williams Project on the Economics of Higher Education DP-30, Department of Economics, Williams College.
    15. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    16. Paolo Buonanno & Matteo M. Galizzi, 2009. "Advocatus, et non latro? Testing the supplier-induced demand hypothesis for Italian courts of justice," Working Papers 0914, University of Brescia, Department of Economics.
    17. Abu-Qarn, Aamer & Lichtman-Sadot, Shirlee, 2019. "Connecting Disadvantaged Communities to Work and Higher Education Opportunities: Evidence from Public Transportation Penetration to Arab Towns in Israel," IZA Discussion Papers 12824, Institute of Labor Economics (IZA).
    18. Alberto Abadie, 2000. "Semiparametric Estimation of Instrumental Variable Models for Causal Effects," NBER Technical Working Papers 0260, National Bureau of Economic Research, Inc.
    19. Orley Ashenfelter & Cecilia Rouse, 1998. "Income, Schooling, and Ability: Evidence from a New Sample of Identical Twins," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(1), pages 253-284.
    20. Daniel J. Henderson & Anne-Charlotte Souto & Le Wang, 2020. "Higher-Order Risk–Returns to Education," JRFM, MDPI, vol. 13(11), pages 1-25, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.