Statistical Properties of Deep Neural Networks with Dependent Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Maxwell B. Stinchcombe & Halbert White, 1992. "Some Measurability Results for Extrema of Random Functions Over Random Sets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(3), pages 495-514.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
- J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b.
- Newey, Whitney K, 1990.
"Efficient Instrumental Variables Estimation of Nonlinear Models,"
Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
- Newey, W.K., 1989. "Efficient Instrumental Variables Estimation Of Nonlinear Models," Papers 341, Princeton, Department of Economics - Econometric Research Program.
- Chen, Xiaohong & Christensen, Timothy M., 2015.
"Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
- Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal Uniform Convergence Rates and Asymptotic Normality for Series Estimators under Weak Dependence and Weak Conditions," Cowles Foundation Discussion Papers 1976, Cowles Foundation for Research in Economics, Yale University.
- Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," CeMMAP working papers CWP46/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
- Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
- J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chad Brown, 2024. "Inference in Partially Linear Models under Dependent Data with Deep Neural Networks," Papers 2410.22574, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chad Brown, 2024. "Inference in Partially Linear Models under Dependent Data with Deep Neural Networks," Papers 2410.22574, arXiv.org.
- Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Gomez-Gonzalez, Jose E. & Uribe, Jorge M. & Valencia, Oscar, 2024. "Sovereign Risk and Economic Complexity," IDB Publications (Working Papers) 13393, Inter-American Development Bank.
- Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
- Zeng, Qing & Lu, Xinjie & Xu, Jin & Lin, Yu, 2024. "Macro-Driven Stock Market Volatility Prediction: Insights from a New Hybrid Machine Learning Approach," International Review of Financial Analysis, Elsevier, vol. 96(PB).
- Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org.
- Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).
- Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
- Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022.
"Marginal College Wage Premiums Under Selection Into Employment,"
The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal college wage premiums under selection into employment," DICE Discussion Papers 341, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal College Wage Premiums under Selection into Employment," IZA Discussion Papers 13382, Institute of Labor Economics (IZA).
- Matthias Westphal & Daniel A. Kamhöfer & Hendrik Schmitz, 2020. "Marginal College Wage Premiums under Selection into Employment," Working Papers CIE 133, Paderborn University, CIE Center for International Economics.
- Westphal, Matthias & Kamhöfer, Daniel A. & Schmitz, Hendrik, 2020. "Marginal college wage premiums under selection into employment," Ruhr Economic Papers 855, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
- Jiawei Wang & Zhen Chen, 2024. "Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-26, June.
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
- Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024.
"GMM estimation for high-dimensional panel data models,"
Journal of Econometrics, Elsevier, vol. 244(1).
- Cheng, T. & Dong, C. & Gao, J. & Linton, O., 2022. "GMM Estimation for High-Dimensional Panel Data Models," Cambridge Working Papers in Economics 2245, Faculty of Economics, University of Cambridge.
- Tingting Cheng & Chaohua Dong & Jiti Gao & Oliver Linton, 2022. "GMM Estimation for High-Dimensional Panel Data Models," Monash Econometrics and Business Statistics Working Papers 11/22, Monash University, Department of Econometrics and Business Statistics.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-11-18 (Big Data)
- NEP-CMP-2024-11-18 (Computational Economics)
- NEP-ECM-2024-11-18 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.11113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.