IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v78y2025ics1062940825000634.html
   My bibliography  Save this article

Long-term forecasting in asset pricing: Machine learning models’ sensitivity to macroeconomic shifts and firm-specific factors

Author

Listed:
  • Qian, Yihe
  • Zhang, Yang

Abstract

This study investigates the long-term forecasting capabilities of five prominent machine learning models—decision tree, random forest, gradient boosted regression trees, support vector machines, and neural networks—within the domain of asset pricing. Applying these models to S&P 500 constituent stocks from 2000 to 2023, we examine their predictive performance over extended horizons. Our findings indicate that Gradient Boosting and Random Forest models stand out for their superior performance, though their predictive accuracy exhibits sensitivity to the prevailing economic stability. Furthermore, these models show enhanced effectiveness in forecasting returns for larger companies, with their performance demonstrating significant variation across different industry sectors. A notable decline in accuracy with the increase in forecasting horizons underscores the challenges inherent in long-term financial prediction. Our results highlight the substantial impact of macroeconomic factors, particularly Consumer Sentiment and Net Exports, whose influences fluctuate over time. Practically, machine learning models, especially Gradient Boosting and Random Forest, are shown to consistently surpass the benchmark S&P 500 index in portfolio construction scenarios. We show the importance of economic stability, firm size, and industry sector context, providing novel insights for the strategic application of machine learning in asset pricing and the formulation of investment strategies suited to diverse market conditions.

Suggested Citation

  • Qian, Yihe & Zhang, Yang, 2025. "Long-term forecasting in asset pricing: Machine learning models’ sensitivity to macroeconomic shifts and firm-specific factors," The North American Journal of Economics and Finance, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:ecofin:v:78:y:2025:i:c:s1062940825000634
    DOI: 10.1016/j.najef.2025.102423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940825000634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2025.102423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Machine learning; Asset pricing; Long-term forecasting; Gradient boosting; Random forest;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:78:y:2025:i:c:s1062940825000634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.