IDEAS home Printed from https://ideas.repec.org/a/eee/jimfin/v155y2025ics0261560625000671.html
   My bibliography  Save this article

Machine learning the performance of hedge fund

Author

Listed:
  • Ma, Tian
  • Wang, Wanwan
  • Jiang, Fuwei

Abstract

This study utilizes generative AI to predict and classify the performance of hedge funds based on groups of fund characteristics. Compared to commonly used machine learning methods, our method can successfully distinguish high- and low-performing funds across various investment strategies, with the return spread being the highest in the equity hedge strategy at 3.16 % monthly. The results are robust in risk-adjusted return prediction. Trend-based features are the most important predictors of future fund performance. Returns of predictive long-short portfolios are higher following periods of low narrative attention and favorable macroeconomic conditions. The asset allocation exercise highlights the significant economic value of machine learning. Our study enriches the burgeoning field of machine learning and artificial intelligence for finance by applying big data techniques to fund selection and allocation.

Suggested Citation

  • Ma, Tian & Wang, Wanwan & Jiang, Fuwei, 2025. "Machine learning the performance of hedge fund," Journal of International Money and Finance, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:jimfin:v:155:y:2025:i:c:s0261560625000671
    DOI: 10.1016/j.jimonfin.2025.103332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0261560625000671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jimonfin.2025.103332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Ma, Tian & Li, Ganghui & Zhang, Huajing, 2024. "Stock return predictability using economic narrative: Evidence from energy sectors," Journal of Commodity Markets, Elsevier, vol. 35(C).
    3. Joenväärä, Juha & Kauppila, Mikko & Kahra, Hannu, 2021. "Hedge fund portfolio selection with fund characteristics," Journal of Banking & Finance, Elsevier, vol. 132(C).
    4. Stefano Giglio & Bryan Kelly & Dacheng Xiu, 2022. "Factor Models, Machine Learning, and Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 337-368, November.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    6. Leland Bybee & Bryan T. Kelly & Asaf Manela & Dacheng Xiu, 2021. "Business News and Business Cycles," NBER Working Papers 29344, National Bureau of Economic Research, Inc.
    7. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    8. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    9. Jonathan Ingersoll & Ivo Welch, 2007. "Portfolio Performance Manipulation and Manipulation-proof Performance Measures," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1503-1546, 2007 17.
    10. Marcin Kacperczyk & Clemens Sialm & Lu Zheng, 2008. "Unobserved Actions of Mutual Funds," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2379-2416, November.
    11. Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    12. repec:bla:jfinan:v:55:y:2000:i:4:p:1655-1703 is not listed on IDEAS
    13. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    14. Andrew J. Patton & Tarun Ramadorai, 2013. "On the High-Frequency Dynamics of Hedge Fund Risk Exposures," Journal of Finance, American Finance Association, vol. 68(2), pages 597-635, April.
    15. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    16. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa Onur, 2012. "Systematic risk and the cross section of hedge fund returns," Journal of Financial Economics, Elsevier, vol. 106(1), pages 114-131.
    17. Russ Wermers, 2000. "Mutual Fund Performance: An Empirical Decomposition into Stock‐Picking Talent, Style, Transactions Costs, and Expenses," Journal of Finance, American Finance Association, vol. 55(4), pages 1655-1695, August.
    18. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    19. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
    20. Olivier Coibion & Yuriy Gorodnichenko & Michael Weber, 2022. "Monetary Policy Communications and Their Effects on Household Inflation Expectations," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1537-1584.
    21. Sheridan Titman & Cristian Tiu, 2011. "Do the Best Hedge Funds Hedge?," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 123-168.
    22. Kosowski, Robert & Naik, Narayan Y. & Teo, Melvyn, 2007. "Do hedge funds deliver alpha? A Bayesian and bootstrap analysis," Journal of Financial Economics, Elsevier, vol. 84(1), pages 229-264, April.
    23. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2014. "Macroeconomic risk and hedge fund returns," Journal of Financial Economics, Elsevier, vol. 114(1), pages 1-19.
    24. Ro'ee Levy, 2021. "Social Media, News Consumption, and Polarization: Evidence from a Field Experiment," American Economic Review, American Economic Association, vol. 111(3), pages 831-870, March.
    25. Roger G. Ibbotson & Peng Chen & Kevin X. Zhu, 2011. "The ABCs of Hedge Funds: Alphas, Betas, and Costs," Financial Analysts Journal, Taylor & Francis Journals, vol. 67(1), pages 15-25, January.
    26. Wenbo Wu & Jiaqi Chen & Zhibin (Ben) Yang & Michael L. Tindall, 2021. "A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection," Management Science, INFORMS, vol. 67(7), pages 4577-4601, July.
    27. William Fung & David A. Hsieh & Narayan Y. Naik & Tarun Ramadorai, 2008. "Hedge Funds: Performance, Risk, and Capital Formation," Journal of Finance, American Finance Association, vol. 63(4), pages 1777-1803, August.
    28. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    29. Slavutskaya, Anna, 2013. "Short-term hedge fund performance," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4404-4431.
    30. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    31. William Fung & David A. Hsieh, 2004. "Hedge Fund Benchmarks: A Risk-Based Approach," Financial Analysts Journal, Taylor & Francis Journals, vol. 60(5), pages 65-80, September.
    32. Cao, Charles & Chen, Yong & Liang, Bing & Lo, Andrew W., 2013. "Can hedge funds time market liquidity?," Journal of Financial Economics, Elsevier, vol. 109(2), pages 493-516.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
    2. Vikas Agarwal & Stefan Ruenzi & Florian Weigert, 2018. "Unobserved Performance of Hedge Funds," Working Papers on Finance 1825, University of St. Gallen, School of Finance.
    3. Agarwal, Vikas & Green, Tracy Clifton & Ren, Honglin, 2017. "Alpha or beta in the eye of the beholder: What drives hedge fund flows?," CFR Working Papers 15-08, University of Cologne, Centre for Financial Research (CFR), revised 2017.
    4. Yong Chen & Bing Han & Jing Pan, 2021. "Sentiment Trading and Hedge Fund Returns," Journal of Finance, American Finance Association, vol. 76(4), pages 2001-2033, August.
    5. Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    6. Namvar, Ethan & Phillips, Blake & Pukthuanthong, Kuntara & Raghavendra Rau, P., 2016. "Do hedge funds dynamically manage systematic risk?," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 1-15.
    7. Massimo Guidolin & Alexei G. Orlov, 2022. "Can Investors Benefit from Hedge Fund Strategies? Utility-Based, Out-of-Sample Evidence," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 1-61, September.
    8. Xiao, Xiang & Hua, Xia & Qin, Kexin, 2024. "A self-attention based cross-sectional return forecasting model with evidence from the Chinese market," Finance Research Letters, Elsevier, vol. 62(PA).
    9. Agarwal, Vikas & Green, T. Clifton & Ren, Honglin, 2018. "Alpha or beta in the eye of the beholder: What drives hedge fund flows?," Journal of Financial Economics, Elsevier, vol. 127(3), pages 417-434.
    10. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2014. "Macroeconomic risk and hedge fund returns," Journal of Financial Economics, Elsevier, vol. 114(1), pages 1-19.
    11. Joenväärä, Juha & Kauppila, Mikko & Kahra, Hannu, 2021. "Hedge fund portfolio selection with fund characteristics," Journal of Banking & Finance, Elsevier, vol. 132(C).
    12. Agarwal, Vikas & Ruenzi, Stefan & Weigert, Florian, 2017. "Tail risk in hedge funds: A unique view from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 125(3), pages 610-636.
    13. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    14. Canepa, Alessandra & de la O. González, María & Skinner, Frank S., 2020. "Hedge fund strategies: A non-parametric analysis," International Review of Financial Analysis, Elsevier, vol. 67(C).
    15. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
    16. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    17. Andrew W. Lo & Mila Getmansky & Peter A. Lee, 2015. "Hedge Funds: A Dynamic Industry in Transition," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 483-577, December.
    18. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    19. Junyi Ye & Bhaskar Goswami & Jingyi Gu & Ajim Uddin & Guiling Wang, 2024. "From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing," Papers 2403.06779, arXiv.org.
    20. Shanyan Lai, 2025. "Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks," Papers 2505.01921, arXiv.org, revised May 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jimfin:v:155:y:2025:i:c:s0261560625000671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30443 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.