IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.04539.html
   My bibliography  Save this paper

Some variation of COBRA in sequential learning setup

Author

Listed:
  • Aryan Bhambu
  • Arabin Kumar Dey

Abstract

This research paper introduces innovative approaches for multivariate time series forecasting based on different variations of the combined regression strategy. We use specific data preprocessing techniques which makes a radical change in the behaviour of prediction. We compare the performance of the model based on two types of hyper-parameter tuning Bayesian optimisation (BO) and Usual Grid search. Our proposed methodologies outperform all state-of-the-art comparative models. We illustrate the methodologies through eight time series datasets from three categories: cryptocurrency, stock index, and short-term load forecasting.

Suggested Citation

  • Aryan Bhambu & Arabin Kumar Dey, 2024. "Some variation of COBRA in sequential learning setup," Papers 2405.04539, arXiv.org.
  • Handle: RePEc:arx:papers:2405.04539
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.04539
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yuhong, 2000. "Combining Different Procedures for Adaptive Regression," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 135-161, July.
    2. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Biau, Gérard & Fischer, Aurélie & Guedj, Benjamin & Malley, James D., 2016. "COBRA: A combined regression strategy," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 18-28.
    4. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojirsheibani, Majid & Kong, Jiajie, 2016. "An asymptotically optimal kernel combined classifier," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 91-100.
    2. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    3. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    4. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    6. Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020. "Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(si), pages 1-17, December.
    7. Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
    8. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    9. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    10. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    11. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    12. Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010. "Estimating the Market Share Attraction Model using Support Vector Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
    13. T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
    14. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    15. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    16. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    17. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    18. N. Loukeris & I. Eleftheriadis & E. Livanis, 2016. "The Portfolio Heuristic Optimisation System (PHOS)," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 627-648, December.
    19. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    20. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.04539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.