IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v74y2000i1p135-161.html
   My bibliography  Save this article

Combining Different Procedures for Adaptive Regression

Author

Listed:
  • Yang, Yuhong

Abstract

Given any countable collection of regression procedures (e.g., kernel, spline, wavelet, local polynomial, neural nets, etc.), we show that a single adaptive procedure can be constructed to share their advantages to a great extent in terms of global squared L2 risk. The combined procedure basically pays a price only of order 1/n for adaptation over the collection. An interesting consequence is that for a countable collection of classes of regression functions (possibly of completely different characteristics), a minimax-rate adaptive estimator can be constructed such that it automatically converges at the right rate for each of the classes being considered. Â A demonstration is given for high-dimensional regression, for which case, to overcome the well-known curse of dimensionality in accuracy, it is advantageous to seek different ways of characterizing a high-dimensional function (e.g., using neural nets or additive modelings) to reduce the influence of input dimension in the traditional theory of approximation (e.g., in terms of series expansion). However, in general, it is difficult to assess which characterization works well for the unknown regression function. Thus adaptation over different modelings is desired. For example, we show by combining various regression procedures that a single estimator can be constructed to be minimax-rate adaptive over Besov classes of unknown smoothness and interaction order, to converge at rate o(n-1/2) when the regression function has a neural net representation, and at the same time to be consistent over all bounded regression functions.

Suggested Citation

  • Yang, Yuhong, 2000. "Combining Different Procedures for Adaptive Regression," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 135-161, July.
  • Handle: RePEc:eee:jmvana:v:74:y:2000:i:1:p:135-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91884-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    2. Gábor Lugosi & Andrew B. Nobel, 1998. "Adaptive model selection using empirical complexities," Economics Working Papers 323, Department of Economics and Business, Universitat Pompeu Fabra.
    3. J. Bowers & B. Brown & J. Springer & L. Tollefson & R. Lorentzen & S. Henry, 1993. "Risk Assessment for Aflatoxin: An Evaluation Based on the Multistage Model," Risk Analysis, John Wiley & Sons, vol. 13(6), pages 637-642, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayanaswamy Balakrishnan & Majid Mojirsheibani, 2015. "A simple method for combining estimates to improve the overall error rates in classification," Computational Statistics, Springer, vol. 30(4), pages 1033-1049, December.
    2. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    3. Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
    4. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    5. Aryan Bhambu & Arabin Kumar Dey, 2024. "Some variation of COBRA in sequential learning setup," Papers 2405.04539, arXiv.org.
    6. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    7. Giovanni Bonaccolto & Sandra Paterlini, 2020. "Developing new portfolio strategies by aggregation," Annals of Operations Research, Springer, vol. 292(2), pages 933-971, September.
    8. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    9. Victoria Zinde-Walsh, 2008. "Consequences of lack of smoothness in nonparametric estimation (in Russian)," Quantile, Quantile, issue 4, pages 57-69, March.
    10. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    11. Mojirsheibani, Majid & Kong, Jiajie, 2016. "An asymptotically optimal kernel combined classifier," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 91-100.
    12. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    13. Tsay, Wen-Jen, 2021. "Estimating cartel damages with model averaging approaches," International Review of Law and Economics, Elsevier, vol. 68(C).
    14. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    15. Li, Xin & Wu, Dongya & Li, Chong & Wang, Jinhua & Yao, Jen-Chih, 2020. "Sparse recovery via nonconvex regularized M-estimators over ℓq-balls," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    2. Noreddine Benkerroum, 2020. "Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries," IJERPH, MDPI, vol. 17(4), pages 1-40, February.
    3. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    4. Marta Horvath & Gábor Lugosi, 1996. "A data-dependent skeleton estimate and a scale-sensitive dimension for classification," Economics Working Papers 199, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.
    6. Stéphane Boucheron & Gábor Lugosi & Pascal Massart, 1999. "A sharp concentration inequality with applications," Economics Working Papers 376, Department of Economics and Business, Universitat Pompeu Fabra.
    7. David W. Gaylor & Ralph L. Kodell & James J. Chen & Janet A. Springer & Ronald J. Lorentzen & Robert J. Scheuplein, 1994. "Point Estimates of Cancer Risk at Low Doses," Risk Analysis, John Wiley & Sons, vol. 14(5), pages 843-850, October.
    8. Peter Bickel & Bo Li & Alexandre Tsybakov & Sara Geer & Bin Yu & Teófilo Valdés & Carlos Rivero & Jianqing Fan & Aad Vaart, 2006. "Regularization in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 271-344, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:74:y:2000:i:1:p:135-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.