IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.01362.html
   My bibliography  Save this paper

Measuring tail risk at high-frequency: An $L_1$-regularized extreme value regression approach with unit-root predictors

Author

Listed:
  • Julien Hambuckers
  • Li Sun
  • Luca Trapin

Abstract

We study tail risk dynamics in high-frequency financial markets and their connection with trading activity and market uncertainty. We introduce a dynamic extreme value regression model accommodating both stationary and local unit-root predictors to appropriately capture the time-varying behaviour of the distribution of high-frequency extreme losses. To characterize trading activity and market uncertainty, we consider several volatility and liquidity predictors, and propose a two-step adaptive $L_1$-regularized maximum likelihood estimator to select the most appropriate ones. We establish the oracle property of the proposed estimator for selecting both stationary and local unit-root predictors, and show its good finite sample properties in an extensive simulation study. Studying the high-frequency extreme losses of nine large liquid U.S. stocks using 42 liquidity and volatility predictors, we find the severity of extreme losses to be well predicted by low levels of price impact in period of high volatility of liquidity and volatility.

Suggested Citation

  • Julien Hambuckers & Li Sun & Luca Trapin, 2023. "Measuring tail risk at high-frequency: An $L_1$-regularized extreme value regression approach with unit-root predictors," Papers 2301.01362, arXiv.org.
  • Handle: RePEc:arx:papers:2301.01362
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.01362
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    2. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    3. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    4. Enzo D’Innocenzo & André Lucas & Bernd Schwaab & Xin Zhang, 2024. "Modeling Extreme Events: Time-Varying Extreme Tail Shape," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 903-917, July.
    5. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    6. Kock, Anders Bredahl, 2016. "Consistent And Conservative Model Selection With The Adaptive Lasso In Stationary And Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 32(1), pages 243-259, February.
    7. Grossman, S.J. & Miller, M.H., 1988. "Liquidity And Market Structure," Papers 88, Princeton, Department of Economics - Financial Research Center.
    8. Julien Hambuckers & Andreas Groll & Thomas Kneib, 2018. "Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 898-935, September.
    9. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    10. Saikkonen, Pentti, 1993. "Continuous Weak Convergence and Stochastic Equicontinuity Results for Integrated Processes with an Application to the Estimation of a Regression Model," Econometric Theory, Cambridge University Press, vol. 9(2), pages 155-188, April.
    11. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    12. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    13. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    14. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    15. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    16. Brogaard, Jonathan & Carrion, Allen & Moyaert, Thibaut & Riordan, Ryan & Shkilko, Andriy & Sokolov, Konstantin, 2018. "High frequency trading and extreme price movements," Journal of Financial Economics, Elsevier, vol. 128(2), pages 253-265.
    17. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    18. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
    19. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    20. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    21. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    22. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    23. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    24. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    25. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    26. Robert Tibshirani & Jacob Bien & Jerome Friedman & Trevor Hastie & Noah Simon & Jonathan Taylor & Ryan J. Tibshirani, 2012. "Strong rules for discarding predictors in lasso‐type problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 245-266, March.
    27. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.
    28. Saikkonen, Pentti, 1995. "Problems with the Asymptotic Theory of Maximum Likelihood Estimation in Integrated and Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 11(5), pages 888-911, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    2. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    4. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Wang, Keli & Liu, Xiaoquan & Ye, Wuyi, 2023. "Intraday VaR: A copula-based approach," Journal of Empirical Finance, Elsevier, vol. 74(C).
    6. Banerjee, Anirban & Nawn, Samarpan, 2024. "Proprietary algorithmic traders and liquidity supply during the pandemic," Finance Research Letters, Elsevier, vol. 61(C).
    7. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    8. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    9. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    10. Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
    11. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    12. Hagströmer, Björn, 2021. "Bias in the effective bid-ask spread," Journal of Financial Economics, Elsevier, vol. 142(1), pages 314-337.
    13. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    14. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    15. Abankwa, Samuel & Blenman, Lloyd P., 2021. "Measuring liquidity risk effects on carry trades across currencies and regimes," Journal of Multinational Financial Management, Elsevier, vol. 60(C).
    16. Zeynep Cobandag Guloglu & Cumhur Ekinci, 2022. "Liquidity measurement: A comparative review of the literature with a focus on high frequency," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 41-74, February.
    17. Hurvich, Cliiford & Wang, Yi, 2006. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 1413, University Library of Munich, Germany.
    18. Ayad Assoil & Ndéné Ka & Jules Sadefo-Kamdem, 2021. "Analysis of the dynamic relationship between liquidity proxies and returns on the French CAC 40 index," SN Business & Economics, Springer, vol. 1(10), pages 1-23, October.
    19. Díaz, Antonio & Escribano, Ana, 2022. "Liquidity dimensions in the U.S. corporate bond market," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 1163-1179.
    20. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "The heterogeneous impact of liquidity on volatility in Chinese stock index futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 73-85.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.01362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.