IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.14387.html
   My bibliography  Save this paper

Machine Learning Algorithms for Time Series Analysis and Forecasting

Author

Listed:
  • Rameshwar Garg
  • Shriya Barpanda
  • Girish Rao Salanke N S
  • Ramya S

Abstract

Time series data is being used everywhere, from sales records to patients' health evolution metrics. The ability to deal with this data has become a necessity, and time series analysis and forecasting are used for the same. Every Machine Learning enthusiast would consider these as very important tools, as they deepen the understanding of the characteristics of data. Forecasting is used to predict the value of a variable in the future, based on its past occurrences. A detailed survey of the various methods that are used for forecasting has been presented in this paper. The complete process of forecasting, from preprocessing to validation has also been explained thoroughly. Various statistical and deep learning models have been considered, notably, ARIMA, Prophet and LSTMs. Hybrid versions of Machine Learning models have also been explored and elucidated. Our work can be used by anyone to develop a good understanding of the forecasting process, and to identify various state of the art models which are being used today.

Suggested Citation

  • Rameshwar Garg & Shriya Barpanda & Girish Rao Salanke N S & Ramya S, 2022. "Machine Learning Algorithms for Time Series Analysis and Forecasting," Papers 2211.14387, arXiv.org.
  • Handle: RePEc:arx:papers:2211.14387
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.14387
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Chatfield, 1978. "The Holt‐Winters Forecasting Procedure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 264-279, November.
    2. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    3. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    4. Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models," Papers 2010.13891, arXiv.org.
    5. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    6. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    7. Nguyen, H.D. & Tran, K.P. & Thomassey, S. & Hamad, M., 2021. "Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management," International Journal of Information Management, Elsevier, vol. 57(C).
    8. Lifeng Wu & Xiaohui Gao & Yanli Xiao & Sifeng Liu & Yingjie Yang, 2017. "Using grey Holt–Winters model to predict the air quality index for cities in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1003-1012, September.
    9. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    4. Isra Al-Turaiki & Fahad Almutlaq & Hend Alrasheed & Norah Alballa, 2021. "Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
    5. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
    6. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    7. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    8. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    9. Dyna Heng & Anna Ivanova & Rodrigo Mariscal & Ms. Uma Ramakrishnan & Joyce Wong, 2016. "Advancing Financial Development in Latin America and the Caribbean," IMF Working Papers 2016/081, International Monetary Fund.
    10. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "The implications of monetary expansion in China for the US dollar," Journal of Asian Economics, Elsevier, vol. 46(C), pages 71-84.
    11. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    13. Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
    14. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    15. Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
    16. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    17. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    18. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    19. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    20. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.14387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.