IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2864.html
   My bibliography  Save this article

Assessing predictability of environmental time series with statistical and machine learning models

Author

Listed:
  • Matthew Bonas
  • Abhirup Datta
  • Christopher K. Wikle
  • Edward L. Boone
  • Faten S. Alamri
  • Bhava Vyasa Hari
  • Indulekha Kavila
  • Susan J. Simmons
  • Shannon M. Jarvis
  • Wesley S. Burr
  • Daniel E. Pagendam
  • Won Chang
  • Stefano Castruccio

Abstract

The ever increasing popularity of machine learning methods in virtually all areas of science, engineering and beyond is poised to put established statistical modeling approaches into question. Environmental statistics is no exception, as popular constructs such as neural networks and decision trees are now routinely used to provide forecasts of physical processes ranging from air pollution to meteorology. This presents both challenges and opportunities to the statistical community, which could contribute to the machine learning literature with a model‐based approach with formal uncertainty quantification. Should, however, classical statistical methodologies be discarded altogether in environmental statistics, and should our contribution be focused on formalizing machine learning constructs? This work aims at providing some answers to this thought‐provoking question with two time series case studies where selected models from both the statistical and machine learning literature are compared in terms of forecasting skills, uncertainty quantification and computational time. Relative merits of both class of approaches are discussed, and broad open questions are formulated as a baseline for a discussion on the topic.

Suggested Citation

  • Matthew Bonas & Abhirup Datta & Christopher K. Wikle & Edward L. Boone & Faten S. Alamri & Bhava Vyasa Hari & Indulekha Kavila & Susan J. Simmons & Shannon M. Jarvis & Wesley S. Burr & Daniel E. Pagen, 2025. "Assessing predictability of environmental time series with statistical and machine learning models," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2864
    DOI: 10.1002/env.2864
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2864
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher K. Wikle & Abhirup Datta & Bhava Vyasa Hari & Edward L. Boone & Indranil Sahoo & Indulekha Kavila & Stefano Castruccio & Susan J. Simmons & Wesley S. Burr & Won Chang, 2023. "An illustration of model agnostic explainability methods applied to environmental data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    2. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    3. Arkajyoti Saha & Sumanta Basu & Abhirup Datta, 2023. "Random Forests for Spatially Dependent Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 665-683, January.
    4. Patrick L. McDermott & Christopher K. Wikle, 2019. "Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting," Environmetrics, John Wiley & Sons, Ltd., vol. 30(3), May.
    5. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    6. Lynn H. Kaack & Priya L. Donti & Emma Strubell & George Kamiya & Felix Creutzig & David Rolnick, 2022. "Aligning artificial intelligence with climate change mitigation," Nature Climate Change, Nature, vol. 12(6), pages 518-527, June.
    7. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    8. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    9. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    10. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shikun Wang & Fengjie Geng & Yuting Li & Hongjie Liu, 2025. "Learning High-Dimensional Chaos Based on an Echo State Network with Homotopy Transformation," Mathematics, MDPI, vol. 13(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
    3. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    4. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    5. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    6. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    7. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    8. Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
    9. Sonaxy Mohanty & Airi Shimamura & Charles D. Nicholson & Andrés D. González & Talayeh Razzaghi, 2025. "Hierarchical Time Series Forecasting of COVID-19 Cases Using County-Level Clustering Data," SN Operations Research Forum, Springer, vol. 6(1), pages 1-28, March.
    10. Ye, Lili & Xie, Naiming & Boylan, John E. & Shang, Zhongju, 2024. "Forecasting seasonal demand for retail: A Fourier time-varying grey model," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1467-1485.
    11. Felipe Santos‐Marquez, 2022. "Spatial beta‐convergence forecasting models: Evidence from municipal homicide rates in Colombia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 294-302, March.
    12. Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
    13. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    14. Joseph Ross, 2021. "Stationarity Statistics on Rolling Windows," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 655-691, February.
    15. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    16. Konstantinos Oikonomou & Dimitris Damigos, 2025. "Short term forecasting of base metals prices using a LightGBM and a LightGBM - ARIMA ensemble," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 37-49, March.
    17. Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    18. Rameshwar Garg & Shriya Barpanda & Girish Rao Salanke N S & Ramya S, 2022. "Machine Learning Algorithms for Time Series Analysis and Forecasting," Papers 2211.14387, arXiv.org.
    19. Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
    20. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.