IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.10577.html
   My bibliography  Save this paper

Modeling Bike Share Station Activity: Effects of Nearby Businesses and Jobs on Trips to and from Stations

Author

Listed:
  • Xize Wang

    (University of Southern California)

  • Greg Lindsey

    (University of Minnesota)

  • Jessica E. Schoner

    (University of Minnesota)

  • Andrew Harrison

    (San Francisco Municipal Transportation Agency)

Abstract

The purpose of this research is to identify correlates of bike station activity for Nice Ride Minnesota, a bike share system in Minneapolis - St. Paul Metropolitan Area in Minnesota. We obtained the number of trips to and from each of the 116 bike share stations operating in 2011 from Nice Ride Minnesota. Data for independent variables included in models come from a variety of sources; including the 2010 US Census, the Metropolitan Council, a regional planning agency, and the cities of Minneapolis and St. Paul. We use log-linear and negative binomial regression models to evaluate the marginal effects of these factors on average daily station trips. Our models have high goodness of fit, and each of 13 independent variables is significant at the 10% level or higher. The number of trips at Nice Ride stations is associated with neighborhood socio demographics (i.e., age and race), proximity to the central business district, proximity to water, accessibility to trails, distance to other bike share stations, and measures of economic activity. Analysts can use these results to optimize bike share operations, locate new stations, and evaluate the potential of new bike share programs.

Suggested Citation

  • Xize Wang & Greg Lindsey & Jessica E. Schoner & Andrew Harrison, 2022. "Modeling Bike Share Station Activity: Effects of Nearby Businesses and Jobs on Trips to and from Stations," Papers 2207.10577, arXiv.org.
  • Handle: RePEc:arx:papers:2207.10577
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.10577
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Yingling & Guthrie, Andrew E & Levinson, David M, 2012. "Impact of light rail implementation on labor market accessibility: A transportation equity perspective," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 28-39.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. Funderburg, Richard G. & Nixon, Hilary & Boarnet, Marlon G. & Ferguson, Gavin, 2010. "New highways and land use change: Results from a quasi-experimental research design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 76-98, February.
    4. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    5. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xize & Lindsey, Greg & Schoner, Jessica E. & Harrison, Andrew, 2016. "Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations," SocArXiv stav4, Center for Open Science.
    2. Chen, Shang-Yu, 2016. "Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 58-72.
    3. Médard de Chardon, Cyrille, 2019. "The contradictions of bike-share benefits, purposes and outcomes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 401-419.
    4. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    5. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    6. Bullrich, Ignacio Tomás, 2021. "Estudio de viabilidad acerca de la instalación de un sistema de bikesharing en la ciudad de Mar del Plata," Nülan. Deposited Documents 3554, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    7. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    8. Albiński, Szymon & Fontaine, Pirmin & Minner, Stefan, 2018. "Performance analysis of a hybrid bike sharing system: A service-level-based approach under censored demand observations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 59-69.
    9. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    10. C. S. Shui & W. L. Chan, 2019. "Optimization of a Bikeway Network with Selective Nodes," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    11. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    12. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    13. Zhu, Jing & Fan, Yingling, 2018. "Daily travel behavior and emotional well-being: Effects of trip mode, duration, purpose, and companionship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 360-373.
    14. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    15. Kearns, Michelle & Ledsham, Trudy & Savan, Beth & Scott, James, 2019. "Increasing cycling for transportation through mentorship programs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 34-45.
    16. Julie Clark & Angela Curl, 2016. "Bicycle and Car Share Schemes as Inclusive Modes of Travel? A Socio-Spatial Analysis in Glasgow, UK," Social Inclusion, Cogitatio Press, vol. 4(3), pages 83-99.
    17. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    18. Juelin Yin & Lixian Qian & Anusorn Singhapakdi, 2018. "Sharing Sustainability: How Values and Ethics Matter in Consumers’ Adoption of Public Bicycle-Sharing Scheme," Journal of Business Ethics, Springer, vol. 149(2), pages 313-332, May.
    19. Chen, Shang-Yu, 2016. "Green helpfulness or fun? Influences of green perceived value on the green loyalty of users and non-users of public bikes," Transport Policy, Elsevier, vol. 47(C), pages 149-159.
    20. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.10577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.