IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.05943.html
   My bibliography  Save this paper

Two-stage differences in differences

Author

Listed:
  • John Gardner

Abstract

A recent literature has shown that when adoption of a treatment is staggered and average treatment effects vary across groups and over time, difference-in-differences regression does not identify an easily interpretable measure of the typical effect of the treatment. In this paper, I extend this literature in two ways. First, I provide some simple underlying intuition for why difference-in-differences regression does not identify a group$\times$period average treatment effect. Second, I propose an alternative two-stage estimation framework, motivated by this intuition. In this framework, group and period effects are identified in a first stage from the sample of untreated observations, and average treatment effects are identified in a second stage by comparing treated and untreated outcomes, after removing these group and period effects. The two-stage approach is robust to treatment-effect heterogeneity under staggered adoption, and can be used to identify a host of different average treatment effect measures. It is also simple, intuitive, and easy to implement. I establish the theoretical properties of the two-stage approach and demonstrate its effectiveness and applicability using Monte-Carlo evidence and an example from the literature.

Suggested Citation

  • John Gardner, 2022. "Two-stage differences in differences," Papers 2207.05943, arXiv.org.
  • Handle: RePEc:arx:papers:2207.05943
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.05943
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    3. Manasi Deshpande & Yue Li, 2019. "Who Is Screened Out? Application Costs and the Targeting of Disability Programs," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 213-248, November.
    4. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    5. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    6. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    7. Andrew Goodman-Bacon, 2018. "Difference-in-Differences with Variation in Treatment Timing," NBER Working Papers 25018, National Bureau of Economic Research, Inc.
    8. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah Klauber & Felix Holub & Nicolas Koch & Nico Pestel & Nolan Ritter & Alexander Rohlf, 2024. "Killing Prescriptions Softly: Low Emission Zones and Child Health from Birth to School," American Economic Journal: Economic Policy, American Economic Association, vol. 16(2), pages 220-248, May.
    2. Tamara Bischof & Boris Kaiser, 2021. "Who cares when you close down? The effects of primary care practice closures on patients," Health Economics, John Wiley & Sons, Ltd., vol. 30(9), pages 2004-2025, September.
    3. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    4. Michelle Marcus & Pedro H. C. Sant’Anna, 2021. "The Role of Parallel Trends in Event Study Settings: An Application to Environmental Economics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 235-275.
    5. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    6. Maclean, J. Catherine & Pichler, Stefan & Ziebarth, Nicolas R., 2020. "Mandated Sick Pay: Coverage, Utilization, and Welfare Effects," IZA Discussion Papers 13132, Institute of Labor Economics (IZA).
    7. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    8. Kurt Schmidheiny & Sebastian Siegloch, 2023. "On event studies and distributed‐lags in two‐way fixed effects models: Identification, equivalence, and generalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 695-713, August.
    9. Bhattacharjee, Arnab & Aravena, Claudia & Castillo, Natalia & Ehrlich, Marco & Taou, Nadia & Wagner, Thomas, 2022. "Agroforestry Programs in the Colombian Amazon: Selection, Treatment and Exposure Effects on Deforestation," National Institute of Economic and Social Research (NIESR) Discussion Papers 537, National Institute of Economic and Social Research.
    10. Don Fullerton & Chi L. Ta, 2022. "What Determines Effectiveness of Renewable Energy Standards? General Equilibrium Analytical Model and Empirical Analysis," CESifo Working Paper Series 9565, CESifo.
    11. Diogo G. C. Britto & Paolo Pinotti & Breno Sampaio, 2022. "The Effect of Job Loss and Unemployment Insurance on Crime in Brazil," Econometrica, Econometric Society, vol. 90(4), pages 1393-1423, July.
    12. Rösner, Anja & Haucap, Justus & Heimeshoff, Ulrich, 2020. "The impact of consumer protection in the digital age: Evidence from the European Union," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    13. Sumit Agarwal & Slava Mikhed & Barry Scholnick & Man Zhang, 2022. "Reducing Strategic Default in a Financial Crisis," Working Papers 21-36, Federal Reserve Bank of Philadelphia.
    14. Christine Benesch & Rino L. Heim & Mark Schelker & Lukas D. Schmid, 2021. "Do Voting Advice Applications Change Political Behavior?," CESifo Working Paper Series 8868, CESifo.
    15. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    16. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    17. Pengju Zhang, 2023. "The fiscal and economic impacts of municipal dissolution: evidence from New York," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(4), pages 948-1001, August.
    18. Capitán, Tabaré & Alpízar, Francisco & Madrigal-Ballestero, Róger & Pattanayak, Subhrendu K., 2021. "Time-varying pricing may increase total electricity consumption: Evidence from Costa Rica," Resource and Energy Economics, Elsevier, vol. 66(C).
    19. Giulia Bettin & Isabella Giorgetti & Stefano Staffolani, 2024. "The impact of Covid-19 lockdown on the gender gap in the Italian labour market," Review of Economics of the Household, Springer, vol. 22(1), pages 1-33, March.
    20. Andrea Mattozzi & Samuel Nocito & Francesco Sobbrio, 2022. "Fact-Checking Politicians," CESifo Working Paper Series 10122, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.05943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.