IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.03379.html
   My bibliography  Save this paper

Optimal liquidation for a risk averse investor in a one-sided limit order book driven by a Levy process

Author

Listed:
  • Arne Lokka
  • Junwei Xu

Abstract

In a one-sided limit order book, satisfying some realistic assumptions, where the unaffected price process follows a Levy process, we consider a market agent that wants to liquidate a large position of shares. We assume that the agent has constant absolute risk aversion and aims at maximising the expected utility of the cash position at the end of time. The agent is then faced with the problem of balancing the market risk and the cost of a rapid execution. In particular we are interested in how the agent should go about optimally submitting orders. Since liquidation normally takes place within a short period of time, modelling the risk as a Levy process should provide a realistic model with good statistical fit to observed market data, and thus the model should provide a realistic reflection of the agent's market risk. We reduce the optimisation problem to a deterministic two-dimensional singular problem, to which we are able to derive an explicit solution in terms of the model data. In particular we find an expression for the optimal intervention boundary, which completely characterise the optimal liquidation strategy.

Suggested Citation

  • Arne Lokka & Junwei Xu, 2020. "Optimal liquidation for a risk averse investor in a one-sided limit order book driven by a Levy process," Papers 2002.03379, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:2002.03379
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.03379
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    3. Alexander Schied & Torsten Schoneborn & Michael Tehranchi, 2010. "Optimal Basket Liquidation for CARA Investors is Deterministic," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 471-489.
    4. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    5. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    6. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    7. Alfonsi Aurélien & Alexander Schied & Alla Slynko, 2012. "Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem," Post-Print hal-00941333, HAL.
    8. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    9. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    10. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    11. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Olivier Gu'eant, 2013. "Permanent market impact can be nonlinear," Papers 1305.0413, arXiv.org, revised Mar 2014.
    5. Daniel Hern'andez-Hern'andez & Harold A. Moreno-Franco & Jos'e Luis P'erez, 2017. "Periodic strategies in optimal execution with multiplicative price impact," Papers 1705.00284, arXiv.org, revised May 2018.
    6. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    7. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    8. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    9. Ludovic Moreau & Johannes Muhle-Karbe & H. Mete Soner, 2014. "Trading with Small Price Impact," Papers 1402.5304, arXiv.org, revised Mar 2015.
    10. Torsten Schöneborn, 2016. "Adaptive basket liquidation," Finance and Stochastics, Springer, vol. 20(2), pages 455-493, April.
    11. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    12. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
    13. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.
    14. repec:dau:papers:123456789/7391 is not listed on IDEAS
    15. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    16. Alexander Barzykin & Fabrizio Lillo, 2019. "Optimal VWAP execution under transient price impact," Papers 1901.02327, arXiv.org, revised Jan 2019.
    17. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    18. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    19. Hyoeun Lee & Kiseop Lee, 2020. "Optimal execution with liquidity risk in a diffusive order book market," Papers 2004.10951, arXiv.org.
    20. Jan Kallsen & Johannes Muhle-Karbe, 2014. "High-Resilience Limits of Block-Shaped Order Books," Papers 1409.7269, arXiv.org.
    21. Xiangge Luo & Alexander Schied, 2018. "Nash equilibrium for risk-averse investors in a market impact game with transient price impact," Papers 1807.03813, arXiv.org, revised Jun 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.03379. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.