IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.08740.html
   My bibliography  Save this paper

Extension and calibration of a Hawkes-based optimal execution model

Author

Listed:
  • Aur'elien Alfonsi
  • Pierre Blanc

Abstract

We provide some theoretical extensions and a calibration protocol for our former dynamic optimal execution model. The Hawkes parameters and the propagator are estimated independently on financial data from stocks of the CAC40. Interestingly, the propagator exhibits a smoothly decaying form with one or two dominant time scales, but only so after a few seconds that the market needs to adjust after a large trade. Motivated by our estimation results, we derive the optimal execution strategy for a multi-exponential Hawkes kernel and backtest it on the data for round trips. We find that the strategy is profitable on average when trading at the midprice, which is in accordance with violated martingale conditions. However, in most cases, these profits vanish when we take bid-ask costs into account.

Suggested Citation

  • Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
  • Handle: RePEc:arx:papers:1506.08740
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.08740
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    3. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    4. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    5. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Szabolcs Mike, 2006. "Market efficiency and the long-memory of supply and demand: is price impact variable and permanent or fixed and temporary?," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 107-112.
    6. Aur'elien Alfonsi & Alexander Schied, 2012. "Capacitary measures for completely monotone kernels via singular control," Papers 1201.2756, arXiv.org, revised Feb 2013.
    7. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    8. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    9. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    10. Stephen J. Hardiman & Jean-Philippe Bouchaud, 2014. "Branching ratio approximation for the self-exciting Hawkes process," Papers 1403.5227, arXiv.org, revised Oct 2014.
    11. Aurélien Alfonsi & Alexander Schied, 2013. "Capacitary measures for completely monotone kernels via singular control," Post-Print hal-00659421, HAL.
    12. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    13. Alfonsi Aurélien & Alexander Schied & Alla Slynko, 2012. "Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem," Post-Print hal-00941333, HAL.
    14. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    15. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    2. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    3. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    4. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    5. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    6. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2017. "Optimal execution with non-linear transient market impact," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 41-54, January.
    7. Alexander Schied & Elias Strehle & Tao Zhang, 2015. "High-frequency limit of Nash equilibria in a market impact game with transient price impact," Papers 1509.08281, arXiv.org, revised May 2017.
    8. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    9. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    11. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    12. Torsten Schöneborn, 2016. "Adaptive basket liquidation," Finance and Stochastics, Springer, vol. 20(2), pages 455-493, April.
    13. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    14. Alexander Barzykin & Fabrizio Lillo, 2019. "Optimal VWAP execution under transient price impact," Papers 1901.02327, arXiv.org, revised Jan 2019.
    15. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    16. Hyoeun Lee & Kiseop Lee, 2020. "Optimal execution with liquidity risk in a diffusive order book market," Papers 2004.10951, arXiv.org.
    17. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    18. Alexander Schied & Tao Zhang, 2013. "A market impact game under transient price impact," Papers 1305.4013, arXiv.org, revised May 2017.
    19. Aur'elien Alfonsi & Jos'e Infante Acevedo, 2012. "Optimal execution and price manipulations in time-varying limit order books," Papers 1204.2736, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.08740. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.