IDEAS home Printed from
   My bibliography  Save this paper

Algorithms for Competitive Division of Chores


  • Simina Br^anzei
  • Fedor Sandomirskiy


We study the problem of allocating divisible bads (chores) among multiple agents with additive utilities, when money transfers are not allowed. The competitive rule is known to be the best mechanism for goods with additive utilities and was recently extended to chores by Bogomolnaia et al (2017). For both goods and chores, the rule produces Pareto optimal and envy-free allocations. In the case of goods, the outcome of the competitive rule can be easily computed. Competitive allocations solve the Eisenberg-Gale convex program; hence the outcome is unique and can be approximately found by standard gradient methods. An exact algorithm that runs in polynomial time in the number of agents and goods was given by Orlin. In the case of chores, the competitive rule does not solve any convex optimization problem; instead, competitive allocations correspond to local minima, local maxima, and saddle points of the Nash Social Welfare on the Pareto frontier of the set of feasible utilities. The rule becomes multivalued and none of the standard methods can be applied to compute its outcome. In this paper, we show that all the outcomes of the competitive rule for chores can be computed in strongly polynomial time if either the number of agents or the number of chores is fixed. The approach is based on a combination of three ideas: all consumption graphs of Pareto optimal allocations can be listed in polynomial time; for a given consumption graph, a candidate for a competitive allocation can be constructed via explicit formula; and a given allocation can be checked for being competitive using a maximum flow computation as in Devanur et al (2002). Our algorithm immediately gives an approximately-fair allocation of indivisible chores by the rounding technique of Barman and Krishnamurthy (2018).

Suggested Citation

  • Simina Br^anzei & Fedor Sandomirskiy, 2019. "Algorithms for Competitive Division of Chores," Papers 1907.01766,
  • Handle: RePEc:arx:papers:1907.01766

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Shapley, Lloyd & Scarf, Herbert, 1974. "On cores and indivisibility," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 23-37, March.
    2. Gale, David, 1976. "The linear exchange model," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 205-209, July.
    3. Varian, Hal R., 1974. "Equity, envy, and efficiency," Journal of Economic Theory, Elsevier, vol. 9(1), pages 63-91, September.
    4. Atila Abdulkadiroglu & Tayfun Sönmez, 2003. "School Choice: A Mechanism Design Approach," American Economic Review, American Economic Association, vol. 93(3), pages 729-747, June.
    5. Anna Bogomolnaia & Hervé Moulin & Fedor Sandomirskiy & Elena Yanovskaya, 2017. "Competitive Division of a Mixed Manna," Econometrica, Econometric Society, vol. 85(6), pages 1847-1871, November.
    6. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    7. Hylland, Aanund & Zeckhauser, Richard, 1979. "The Efficient Allocation of Individuals to Positions," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 293-314, April.
    8. Chiaki Hara, 2005. "Existence of Equilibria in Economies with Bads," Econometrica, Econometric Society, vol. 73(2), pages 647-658, March.
    9. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    10. You, Jung S., 2015. "Optimal VCG mechanisms to assign multiple bads," Games and Economic Behavior, Elsevier, vol. 92(C), pages 166-190.
    11. Eaves, B. Curtis, 1976. "A finite algorithm for the linear exchange model," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 197-203, July.
    12. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    13. Gjerstad, S., 1996. "Multiple Equilibria in Exchange Economies with Homothetic, Nearly Identical Preferences," Papers 288, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Erel Segal-Halevi, 2019. "Fair Division with Bounded Sharing," Papers 1912.00459,

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega, Josué, 2020. "Multi-unit assignment under dichotomous preferences," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 15-24.
    2. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press, vol. 33(4), pages 541-571.
    3. Ivan Balbuzanov & Maciej H. Kotowski, 2019. "Endowments, Exclusion, and Exchange," Econometrica, Econometric Society, vol. 87(5), pages 1663-1692, September.
    4. José Alcalde & Antonio Romero-Medina, 2017. "Fair student placement," Theory and Decision, Springer, vol. 83(2), pages 293-307, August.
    5. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'économie 14.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    6. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    7. Anno, Hidekazu & Kurino, Morimitsu, 2016. "On the operation of multiple matching markets," Games and Economic Behavior, Elsevier, vol. 100(C), pages 166-185.
    8. Hugh-Jones, David & Kurino, Morimitsu & Vanberg, Christoph, 2014. "An experimental study on the incentives of the probabilistic serial mechanism," Games and Economic Behavior, Elsevier, vol. 87(C), pages 367-380.
    9. Thomson, William, 2011. "Chapter Twenty-One - Fair Allocation Rules," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 2, chapter 21, pages 393-506, Elsevier.
    10. YIlmaz, Özgür, 2010. "The probabilistic serial mechanism with private endowments," Games and Economic Behavior, Elsevier, vol. 69(2), pages 475-491, July.
    11. Jugal Garg & Thorben Trobst & Vijay V. Vazirani, 2020. "An Arrow-Debreu Extension of the Hylland-Zeckhauser Scheme: Equilibrium Existence and Algorithms," Papers 2009.10320,, revised Sep 2020.
    12. Ioannis Caragiannis & David Kurokawa & Herve Moulin & Ariel D. Procaccia & Nisarg Shah & Junxing Wang, 2016. "The Unreasonable Fairness of Maximum Nash Welfare," Working Papers 2016_08, Business School - Economics, University of Glasgow.
    13. Onur Kesten & Ayşe Yazıcı, 2012. "The Pareto-dominant strategy-proof and fair rule for problems with indivisible goods," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(2), pages 463-488, June.
    14. He, Yinghua & Li, Sanxi & Yan, Jianye, 2015. "Evaluating assignment without transfers: A market perspective," Economics Letters, Elsevier, vol. 133(C), pages 40-44.
    15. Phuong Le, 2017. "Competitive equilibrium in the random assignment problem," International Journal of Economic Theory, The International Society for Economic Theory, vol. 13(4), pages 369-385, December.
    16. Anna Bogomolnaia & Hervé Moulin & Fedor Sandomirskiy & Elena Yanovskaia, 2019. "Dividing bads under additive utilities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(3), pages 395-417, March.
    17. Bogomolnaia, Anna & Moulin, Herve, 2015. "Size versus fairness in the assignment problem," Games and Economic Behavior, Elsevier, vol. 90(C), pages 119-127.
    18. Abdulkadiroglu, Atila & Sonmez, Tayfun, 2003. "Ordinal efficiency and dominated sets of assignments," Journal of Economic Theory, Elsevier, vol. 112(1), pages 157-172, September.
    19. Diebold, Franz & Bichler, Martin, 2017. "Matching with indifferences: A comparison of algorithms in the context of course allocation," European Journal of Operational Research, Elsevier, vol. 260(1), pages 268-282.
    20. Kesten, Onur & Kurino, Morimitsu & Ünver, M. Utku, 2017. "On characterizations of the probabilistic serial mechanism involving incentive and invariance properties," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 56-62.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.01766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.