IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.02683.html
   My bibliography  Save this paper

Prediction of Shared Bicycle Demand with Wavelet Thresholding

Author

Listed:
  • J. Christopher Westland

    (University of Illinois)

  • Jian Mou

    (XiDian University)

  • Dafei Yin

    (Mobike)

Abstract

Consumers are creatures of habit, often periodic, tied to work, shopping and other schedules. We analyzed one month of data from the world's largest bike-sharing company to elicit demand behavioral cycles, initially using models from animal tracking that showed large customers fit an Ornstein-Uhlenbeck model with demand peaks at periodicities of 7, 12, 24 hour and 7-days. Lorenz curves of bicycle demand showed that the majority of customer usage was infrequent, and demand cycles from time-series models would strongly overfit the data yielding unreliable models. Analysis of thresholded wavelets for the space-time tensor of bike-sharing contracts was able to compress the data into a 56-coefficient model with little loss of information, suggesting that bike-sharing demand behavior is exceptionally strong and regular. Improvements to predicted demand could be made by adjusting for 'noise' filtered by our model from air quality and weather information and demand from infrequent riders.

Suggested Citation

  • J. Christopher Westland & Jian Mou & Dafei Yin, 2018. "Prediction of Shared Bicycle Demand with Wavelet Thresholding," Papers 1802.02683, arXiv.org.
  • Handle: RePEc:arx:papers:1802.02683
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.02683
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    3. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    4. repec:cdl:itsrrp:qt0qm296pf is not listed on IDEAS
    5. repec:cdl:itsrrp:qt6qg8q6ft is not listed on IDEAS
    6. Cravey, Altha J. & Washburn, Sarah A. & Gesler, Wilbert M. & Arcury, Thomas A. & Skelly, Anne H., 2001. "Developing socio-spatial knowledge networks: : a qualitative methodology for chronic disease prevention," Social Science & Medicine, Elsevier, vol. 52(12), pages 1763-1775, June.
    7. Hall, Peter & Nason, Guy P., 1997. "On choosing a non-integer resolution level when using wavelet methods," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 5-11, May.
    8. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Maria Clara Martins & Aloise, Daniel & Jena, Sanjay Dominik, 2024. "Data-driven prioritization strategies for inventory rebalancing in bike-sharing systems," Omega, Elsevier, vol. 129(C).
    2. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    3. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    4. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    5. William A. Massey & Emmanuel Ekwedike & Robert C. Hampshire & Jamol J. Pender, 2023. "A transient symmetry analysis for the M/M/1/k queue," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 1-43, February.
    6. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    7. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    8. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    9. He, Xiaozhou & Wang, Qingyi, 2024. "A stochastic programming model for free-floating shared bike redistribution considering bike gathering," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    10. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.
    11. Muren, & Li, Hao & Mukhopadhyay, Samar K. & Wu, Jian-jun & Zhou, Li & Du, Zhiping, 2020. "Balanced maximal covering location problem and its application in bike-sharing," International Journal of Production Economics, Elsevier, vol. 223(C).
    12. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    13. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    14. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    15. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    16. Jan Brinkmann & Marlin W. Ulmer & Dirk C. Mattfeld, 2020. "The multi-vehicle stochastic-dynamic inventory routing problem for bike sharing systems," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 69-92, April.
    17. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    18. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    19. Sharon Datner & Tal Raviv & Michal Tzur & Daniel Chemla, 2019. "Setting Inventory Levels in a Bike Sharing Network," Service Science, INFORMS, vol. 53(1), pages 62-76, February.
    20. Li, Lili & Li, Xiaohan & Yu, Senbin & Li, Xiaojia & Dai, Jiaqi, 2022. "Unbalanced usage of free-floating bike sharing connecting with metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.02683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.