IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.05114.html

Deep Learning in a Generalized HJM-type Framework Through Arbitrage-Free Regularization

Author

Listed:
  • Anastasis Kratsios
  • Cody B. Hyndman

Abstract

We introduce a regularization approach to arbitrage-free factor-model selection. The considered model selection problem seeks to learn the closest arbitrage-free HJM-type model to any prespecified factor-model. An asymptotic solution to this, a priori computationally intractable, problem is represented as the limit of a 1-parameter family of optimizers to computationally tractable model selection tasks. Each of these simplified model-selection tasks seeks to learn the most similar model, to the prescribed factor-model, subject to a penalty detecting when the reference measure is a local martingale-measure for the entire underlying financial market. A simple expression for the penalty terms is obtained in the bond market withing the affine-term structure setting, and it is used to formulate a deep-learning approach to arbitrage-free affine term-structure modelling. Numerical implementations are also performed to evaluate the performance in the bond market.

Suggested Citation

  • Anastasis Kratsios & Cody B. Hyndman, 2017. "Deep Learning in a Generalized HJM-type Framework Through Arbitrage-Free Regularization," Papers 1710.05114, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1710.05114
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.05114
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    2. Jacek Jakubowski & Jerzy Zabczyk, 2007. "Exponential moments for HJM models with jumps," Finance and Stochastics, Springer, vol. 11(3), pages 429-445, July.
    3. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    4. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    5. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    6. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    7. Siobhán Devin & Bernard Hanzon & Thomas Ribarits, 2010. "A Finite-Dimensional Hjm Model: How Important Is Arbitrage-Free Evolution?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(08), pages 1241-1263.
    8. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wali Ullah & Yasumasa Matsuda, 2014. "Generalized Nelson-Siegel Term Structure Model : Do the second slope and curvature factors improve the in-sample fit and out-of-sample forecast?," TERG Discussion Papers 312, Graduate School of Economics and Management, Tohoku University.
    2. Takamizawa, Hideyuki, 2022. "How arbitrage-free is the Nelson–Siegel model under stochastic volatility?," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 205-223.
    3. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    4. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    5. Donati, Paola & Donati, Francesco, 2008. "Modelling and Forecasting the Yield Curve under Model uncertainty," Working Paper Series 917, European Central Bank.
    6. Almeida, Caio & Vicente, José, 2008. "The role of no-arbitrage on forecasting: Lessons from a parametric term structure model," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2695-2705, December.
    7. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    8. Eduardo Mineo & Airlane Pereira Alencar & Marcelo Moura & Antonio Elias Fabris, 2020. "Forecasting the Term Structure of Interest Rates with Dynamic Constrained Smoothing B-Splines," JRFM, MDPI, vol. 13(4), pages 1-14, April.
    9. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    10. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    11. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    12. João F. Caldeira & Guilherme V. Moura & , Fabricio Tourrucôo, 2016. "Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 17(2), pages 221-237.
    13. Francis X. Diebold, & Rudebusch, Glenn D. & Aruoba, S. Boragan, 2003. "The Macroeconomy and the Yield Curve: A Nonstructural Analysis," CFS Working Paper Series 2003/31, Center for Financial Studies (CFS).
    14. Bouwman, Kees & Buis, Boyd & Pieterse-Bloem, Mary & Tham, Wing Wah, 2015. "A practical approach to constructing price-based funding liquidity factors," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 90-97.
    15. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Chen, S. & Härdle, W.K. & Wang, W., 2016. "Inflation Co-movement across Countries in Multi-maturity Term Structure: An Arbitrage-Free Approach," Working Papers 16/06, Department of Economics, City St George's, University of London.
    17. Anastasis Kratsios & Cody Hyndman, 2020. "Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization," Risks, MDPI, vol. 8(2), pages 1-30, April.
    18. Coroneo, Laura & Nyholm, Ken & Vidova-Koleva, Rositsa, 2011. "How arbitrage-free is the Nelson-Siegel model?," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 393-407, June.
    19. repec:hum:wpaper:sfb649dp2015-049 is not listed on IDEAS
    20. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    21. Wali Ullah, 2020. "The arbitrage-free generalized Nelson–Siegel term structure model: Does a good in-sample fit imply better out-of-sample forecasts?," Empirical Economics, Springer, vol. 59(3), pages 1243-1284, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.05114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.