IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.06285.html
   My bibliography  Save this paper

An Explicit Default Contagion Model and Its Application to Credit Derivatives Pricing

Author

Listed:
  • Dianfa Chen
  • Jun Deng
  • Jianfen Feng
  • Bin Zou

Abstract

We propose a novel credit default model that takes into account the impact of macroeconomic information and contagion effect on the defaults of obligors. We use a set-valued Markov chain to model the default process, which is the set of all defaulted obligors in the group. We obtain analytic characterizations for the default process, and use them to derive pricing formulas in explicit forms for synthetic collateralized debt obligations (CDOs). Furthermore, we use market data to calibrate the model and conduct numerical studies on the tranche spreads of CDOs. We find evidence to support that systematic default risk coupled with default contagion could have the leading component of the total default risk.

Suggested Citation

  • Dianfa Chen & Jun Deng & Jianfen Feng & Bin Zou, 2017. "An Explicit Default Contagion Model and Its Application to Credit Derivatives Pricing," Papers 1706.06285, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1706.06285
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.06285
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Meneguzzo & Walter Vecchiato, 2004. "Copula sensitivity in collateralized debt obligations and basket default swaps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(1), pages 37-70, January.
    2. Marco Avellaneda & Lixin Wu, 2001. "Credit Contagion: Pricing Cross-Country Risk In Brady Debt Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 921-938.
    3. Fan Yu, 2007. "Correlated Defaults In Intensity‐Based Models," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 155-173, April.
    4. Lando, David & Nielsen, Mads Stenbo, 2010. "Correlation in corporate defaults: Contagion or conditional independence?," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 355-372, July.
    5. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Kay Giesecke & Baeho Kim & Shilin Zhu, 2011. "Monte Carlo Algorithms for Default Timing Problems," Management Science, INFORMS, vol. 57(12), pages 2115-2129, December.
    8. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    9. M. Davis & V. Lo, 2001. "Infectious defaults," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 382-387.
    10. Rama Cont & Andreea Minca, 2013. "Recovering portfolio default intensities implied by CDO quotes," Post-Print hal-00413730, HAL.
    11. Stefan Weber & Kay Giesecke, 2003. "Credit Contagion and Aggregate Losses," Computing in Economics and Finance 2003 246, Society for Computational Economics.
    12. Rama Cont & Romain Deguest & Yu Hang Kan, 2010. "Default Intensities implied by CDO Spreads: Inversion Formula and Model Calibration," Post-Print hal-00545744, HAL.
    13. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    14. Kay Giesecke & Lisa R. Goldberg & Xiaowei Ding, 2011. "A Top-Down Approach to Multiname Credit," Operations Research, INFORMS, vol. 59(2), pages 283-300, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, Patrick & Gouriéroux, Christian, 2013. "Correlated risks vs contagion in stochastic transition models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2241-2269.
    2. Areski Cousin & Diana Dorobantu & Didier Rullière, 2013. "An extension of Davis and Lo's contagion model," Quantitative Finance, Taylor & Francis Journals, vol. 13(3), pages 407-420, February.
    3. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    4. Jin-Chuan Duan & Weimin Miao, 2016. "Default Correlations and Large-Portfolio Credit Analysis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 536-546, October.
    5. Egloff, Daniel & Leippold, Markus & Vanini, Paolo, 2007. "A simple model of credit contagion," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2475-2492, August.
    6. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    7. Didier Cossin & Henry Schellhorn, 2007. "Credit Risk in a Network Economy," Management Science, INFORMS, vol. 53(10), pages 1604-1617, October.
    8. Bäuerle Nicole & Schmock Uwe, 2012. "Dependence properties of dynamic credit risk models," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 243-268, August.
    9. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 221-262, March.
    10. Herbertsson, Alexander, 2007. "Modelling Default Contagion Using Multivariate Phase-Type Distributions," Working Papers in Economics 271, University of Gothenburg, Department of Economics.
    11. Chen, Tingqiang & Wang, Jiepeng & Liu, Haifei & He, Yuanping, 2019. "Contagion model on counterparty credit risk in the CRT market by considering the heterogeneity of counterparties and preferential-random mixing attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 458-480.
    12. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    13. Boudreault, Mathieu & Gauthier, Geneviève & Thomassin, Tommy, 2015. "Estimation of correlations in portfolio credit risk models based on noisy security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 334-349.
    14. Jorion, Philippe & Zhang, Gaiyan, 2007. "Good and bad credit contagion: Evidence from credit default swaps," Journal of Financial Economics, Elsevier, vol. 84(3), pages 860-883, June.
    15. Pagès, Henri, 2013. "Bank monitoring incentives and optimal ABS," Journal of Financial Intermediation, Elsevier, vol. 22(1), pages 30-54.
    16. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    17. Xiao, Tim, 2018. "The Valuation of Credit Default Swap with Counterparty Risk and Collateralization," EconStor Preprints 203447, ZBW - Leibniz Information Centre for Economics.
    18. Qian, Qian & Chao, Xiangrui & Feng, Hairong, 2023. "Internal or external control? How to respond to credit risk contagion in complex enterprises network," International Review of Financial Analysis, Elsevier, vol. 87(C).
    19. Xiao,Tim, 2018. "Pricing Financial Derivatives Subject to Multilateral Credit Risk and Collateralization," EconStor Preprints 202075, ZBW - Leibniz Information Centre for Economics.
    20. Qian Qian & Yang Yang & Zong-Fang Zhou, 2019. "Research on Trade Credit Spreading and Credit Risk within the Supply Chain," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 389-411, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.06285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.