IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00413730.html
   My bibliography  Save this paper

Recovering portfolio default intensities implied by CDO quotes

Author

Listed:
  • Rama Cont

    () (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

  • Andreea Minca

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a stable non-parametric algorithm for the calibration of pricing models for portfolio credit derivatives: given a set of observations of market spreads for CDO tranches, we construct a risk-neutral default intensity process for the portfolio underlying the CDO which matches these observations, by looking for the risk neutral loss process 'closest' to a prior loss process, verifying the calibration constraints. We formalize the problem in terms of minimization of relative entropy with respect to the prior under calibration constraints and use convex duality methods to solve the problem: the dual problem is shown to be an intensity control problem, characterized in terms of a Hamilton--Jacobi system of differential equations, for which we present an analytical solution. We illustrate our method on ITRAXX index data: our results reveal strong evidence for the dependence of loss transitions rates on the past number of defaults, thus offering quantitative evidence for contagion effects in the risk--neutral loss process.

Suggested Citation

  • Rama Cont & Andreea Minca, 2013. "Recovering portfolio default intensities implied by CDO quotes," Post-Print hal-00413730, HAL.
  • Handle: RePEc:hal:journl:hal-00413730
    DOI: 10.1111/j.1467-9965.2011.00491.x
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00413730
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00413730/document
    Download Restriction: no

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    2. Stutzer, Michael, 1996. " A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    3. Francis A. Longstaff & Arvind Rajan, 2008. "An Empirical Analysis of the Pricing of Collateralized Debt Obligations," Journal of Finance, American Finance Association, vol. 63(2), pages 529-563, April.
    4. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    5. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole El Karoui & Monique Jeanblanc & Ying Jiao, 2013. "Density approach in modelling multi-defaults," Working Papers hal-00870492, HAL.
    2. Dianfa Chen & Jun Deng & Jianfen Feng & Bin Zou, 2017. "An Explicit Default Contagion Model and Its Application to Credit Derivatives Pricing," Papers 1706.06285, arXiv.org, revised Aug 2018.
    3. Amel Bentata & Rama Cont, 2015. "Forward equations for option prices in semimartingale models," Finance and Stochastics, Springer, vol. 19(3), pages 617-651, July.
    4. repec:eee:jfinec:v:129:y:2018:i:1:p:154-183 is not listed on IDEAS
    5. repec:eee:spapps:v:127:y:2017:i:12:p:3943-3965 is not listed on IDEAS
    6. Cantia, Catalin & Tunaru, Radu, 2017. "A factor model for joint default probabilities. Pricing of CDS, index swaps and index tranches," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 21-35.

    More about this item

    Keywords

    intensity control; stochastic control; point process; inverse problem; nonparametric methods; credit risk; CDO; contagion;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00413730. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.