IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.01987.html
   My bibliography  Save this paper

Deep Learning for Limit Order Books

Author

Listed:
  • Justin Sirignano

Abstract

This paper develops a new neural network architecture for modeling spatial distributions (i.e., distributions on R^d) which is computationally efficient and specifically designed to take advantage of the spatial structure of limit order books. The new architecture yields a low-dimensional model of price movements deep into the limit order book, allowing more effective use of information from deep in the limit order book (i.e., many levels beyond the best bid and best ask). This "spatial neural network" models the joint distribution of the state of the limit order book at a future time conditional on the current state of the limit order book. The spatial neural network outperforms other models such as the naive empirical model, logistic regression (with nonlinear features), and a standard neural network architecture. Both neural networks strongly outperform the logistic regression model. Due to its more effective use of information deep in the limit order book, the spatial neural network especially outperforms the standard neural network in the tail of the distribution, which is important for risk management applications. The models are trained and tested on nearly 500 stocks. Techniques from deep learning such as dropout are employed to improve performance. Due to the significant computational challenges associated with the large amount of data, models are trained with a cluster of 50 GPUs.

Suggested Citation

  • Justin Sirignano, 2016. "Deep Learning for Limit Order Books," Papers 1601.01987, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1601.01987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.01987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    3. Rama Cont & Adrien De Larrard, 2012. "Order book dynamics in liquid markets: limit theorems and diffusion approximations," Papers 1202.6412, arXiv.org.
    4. Avellaneda, Marco & Reed, Josh & Stoikov, Sasha, 2011. "Forecasting prices from level-I quotes in the presence of hidden liquidity," Algorithmic Finance, IOS Press, vol. 1(1), pages 35-43.
    5. Martin D. Gould & Julius Bonart, 2015. "Queue Imbalance as a One-Tick-Ahead Price Predictor in a Limit Order Book," Papers 1512.03492, arXiv.org.
    6. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    7. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    8. Tristan Fletcher & John Shawe-Taylor, 2013. "Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 217-240, August.
    9. Jose Blanchet & Xinyun Chen, 2013. "Continuous-time Modeling of Bid-Ask Spread and Price Dynamics in Limit Order Books," Papers 1310.1103, arXiv.org.
    10. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    11. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    12. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    13. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    14. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    15. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
    2. Defu Cao & Yousef El-Laham & Loc Trinh & Svitlana Vyetrenko & Yan Liu, 2022. "DSLOB: A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift," Papers 2211.11513, arXiv.org.
    3. Justin Sirignano & Apaar Sadhwani & Kay Giesecke, 2016. "Deep Learning for Mortgage Risk," Papers 1607.02470, arXiv.org, revised Mar 2018.
    4. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    5. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators," Papers 1907.09452, arXiv.org.
    6. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    7. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    8. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    9. Matthew F Dixon, 2017. "Sequence Classification of the Limit Order Book using Recurrent Neural Networks," Papers 1707.05642, arXiv.org.
    10. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    11. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    12. Dat Thanh Tran & Alexandros Iosifidis & Juho Kanniainen & Moncef Gabbouj, 2017. "Temporal Attention augmented Bilinear Network for Financial Time-Series Data Analysis," Papers 1712.00975, arXiv.org.
    13. Matthew F Dixon, 2017. "A High Frequency Trade Execution Model for Supervised Learning," Papers 1710.03870, arXiv.org, revised Dec 2017.
    14. Li, Yelin & Bu, Hui & Li, Jiahong & Wu, Junjie, 2020. "The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1541-1562.
    15. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    5. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    6. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    7. Martin D. Gould & Mason A. Porter & Sam D. Howison, 2015. "Quasi-Centralized Limit Order Books," Papers 1502.00680, arXiv.org, revised Oct 2016.
    8. Ke Xu & Martin D. Gould & Sam D. Howison, 2019. "Multi-Level Order-Flow Imbalance in a Limit Order Book," Papers 1907.06230, arXiv.org, revised Oct 2019.
    9. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    10. Felix J. Lopez-Iturriaga & Domingo Javier Santana-Martin, 2015. "Do Shareholder Coalitions Modify Dominant Owner's Control? The Impact On Dividend Policy," HSE Working papers WP BRP 41/FE/2015, National Research University Higher School of Economics.
    11. Nikolay A. Andreev, 2014. "On Linearity Of Transaction Costs In Order Driven Market," HSE Working papers WP BRP 38/FE/2014, National Research University Higher School of Economics.
    12. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.
    13. Charles-Albert Lehalle, 2013. "Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process," Papers 1302.4592, arXiv.org.
    14. Ioane Muni Toke, 2013. "The order book as a queueing system: average depth and influence of the size of limit orders," Papers 1311.5661, arXiv.org.
    15. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    16. Ioane Muni Toke, 2015. "The order book as a queueing system: average depth and influence of the size of limit orders," Post-Print hal-01006410, HAL.
    17. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    18. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.01987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.