IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1504.04581.html

Dirac Processes and Default Risk

Author

Listed:
  • Chris Kenyon
  • Andrew Green

Abstract

We introduce Dirac processes, using Dirac delta functions, for short-rate-type pricing of financial derivatives. Dirac processes add spikes to the existing building blocks of diffusions and jumps. Dirac processes are Generalized Processes, which have not been used directly before because the dollar value of non-Real numbers is meaningless. However, short-rate pricing is based on integrals so Dirac processes are natural. This integration directly implies that jumps are redundant whilst Dirac processes expand expressivity of short-rate approaches. Practically, we demonstrate that Dirac processes enable high implied volatility for CDS swaptions that has been otherwise problematic in hazard rate setups.

Suggested Citation

  • Chris Kenyon & Andrew Green, 2015. "Dirac Processes and Default Risk," Papers 1504.04581, arXiv.org.
  • Handle: RePEc:arx:papers:1504.04581
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1504.04581
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    2. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    3. Jiang, George & Yan, Shu, 2009. "Linear-quadratic term structure models - Toward the understanding of jumps in interest rates," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 473-485, March.
    4. N. Moreni & A. Pallavicini, 2014. "Parsimonious HJM modelling for multiple yield curve dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 199-210, February.
    5. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    6. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    7. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    8. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    2. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    3. López, Oscar & Oleaga, Gerardo & Sánchez, Alejandra, 2021. "Markov-modulated jump-diffusion models for the short rate: Pricing of zero coupon bonds and convexity adjustment," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    4. Don H. Kim & Jonathan H. Wright, 2014. "Jumps in Bond Yields at Known Times," Finance and Economics Discussion Series 2014-100, Board of Governors of the Federal Reserve System (U.S.).
    5. J. Benson Durham, 2005. "Jump-diffusion processes and affine term structure models: additional closed-form approximate solutions, distributional assumptions for jumps, and parameter estimates," Finance and Economics Discussion Series 2005-53, Board of Governors of the Federal Reserve System (U.S.).
    6. Carl Chiarella & Thuy-Duong To, 2005. "The Multifactor Nature of the Volatility of the Eurodollar Futures Market," Research Paper Series 150, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Hinnerich, Mia, 2008. "Inflation-indexed swaps and swaptions," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2293-2306, November.
    8. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    9. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    10. Winkelmann, Lars, 2013. "Quantitative forward guidance and the predictability of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2013-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Benito, Francis & Leon, Angel & Nave, Juan, 2007. "Modeling the Euro overnight rate," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 756-782, December.
    12. I.-Doun Kuo, 2011. "Pricing and hedging volatility smile under multifactor interest rate models," Review of Quantitative Finance and Accounting, Springer, vol. 36(1), pages 83-104, January.
    13. Wu, Shu & Zeng, Yong, 2006. "The term structure of interest rates under regime shifts and jumps," Economics Letters, Elsevier, vol. 93(2), pages 215-221, November.
    14. Fanelli, Viviana, 2017. "Implications of implicit credit spread volatilities on interest rate modelling," European Journal of Operational Research, Elsevier, vol. 263(2), pages 707-718.
    15. Li, Liuling & Mizrach, Bruce, 2010. "Tail return analysis of Bear Stearns' credit default swaps," Economic Modelling, Elsevier, vol. 27(6), pages 1529-1536, November.
    16. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    17. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    18. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    19. J. Benson Durham, 2006. "An estimate of the inflation risk premium using a three-factor affine term structure model," Finance and Economics Discussion Series 2006-42, Board of Governors of the Federal Reserve System (U.S.).
    20. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.04581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.