IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.00358.html
   My bibliography  Save this paper

Optimal Derivative Liquidation Timing Under Path-Dependent Risk Penalties

Author

Listed:
  • Tim Leung
  • Yoshihiro Shirai

Abstract

This paper studies the risk-adjusted optimal timing to liquidate an option at the prevailing market price. In addition to maximizing the expected discounted return from option sale, we incorporate a path-dependent risk penalty based on shortfall or quadratic variation of the option price up to the liquidation time. We establish the conditions under which it is optimal to immediately liquidate or hold the option position through expiration. Furthermore, we study the variational inequality associated with the optimal stopping problem, and prove the existence and uniqueness of a strong solution. A series of analytical and numerical results are provided to illustrate the non-trivial optimal liquidation strategies under geometric Brownian motion (GBM) and exponential Ornstein-Uhlenbeck models. We examine the combined effects of price dynamics and risk penalty on the sell and delay regions for various options. In addition, we obtain an explicit closed-form solution for the liquidation of a stock with quadratic penalty under the GBM model.

Suggested Citation

  • Tim Leung & Yoshihiro Shirai, 2015. "Optimal Derivative Liquidation Timing Under Path-Dependent Risk Penalties," Papers 1502.00358, arXiv.org.
  • Handle: RePEc:arx:papers:1502.00358
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.00358
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    2. Tim Leung & Michael Ludkovski, 2010. "Optimal Timing to Purchase Options," Papers 1008.3650, arXiv.org, revised Apr 2011.
    3. MacLean, Leonard C. & Sanegre, Rafael & Zhao, Yonggan & Ziemba, William T., 2004. "Capital growth with security," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 937-954, February.
    4. Mark Broadie & Mikhail Chernov & Michael Johannes, 2009. "Understanding Index Option Returns," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4493-4529, November.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    6. Julian Lorenz & Robert Almgren, 2011. "Mean--Variance Optimal Adaptive Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 395-422, January.
    7. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    8. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    9. Tim Leung & Peng Liu, 2012. "Risk Premia And Optimal Liquidation Of Credit Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-34.
    10. Aytaç Ílhan & Mattias Jonsson & Ronnie Sircar, 2005. "Optimal investment with derivative securities," Finance and Stochastics, Springer, vol. 9(4), pages 585-595, October.
    11. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    12. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Leung & Zheng Wang, 2016. "Optimal Risk-Averse Timing of an Asset Sale: Trending vs Mean-Reverting Price Dynamics," Papers 1610.08143, arXiv.org.
    2. Tim Leung & Jiao Li & Xin Li & Zheng Wang, 2016. "Speculative Futures Trading under Mean Reversion," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 23(4), pages 281-304, December.
    3. Jiao Li, 2016. "Trading VIX futures under mean reversion with regime switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-20, September.
    4. Tim Leung & Jiao Li & Xin Li, 2017. "Optimal Timing to Trade Along a Randomized Brownian Bridge," Papers 1801.00372, arXiv.org.
    5. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    6. Brian Bulthuis & Julio Concha & Tim Leung & Brian Ward, 2017. "Optimal execution of limit and market orders with trade director, speed limiter, and fill uncertainty," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    7. repec:wsi:ijtafx:v:18:y:2015:i:03:n:s021902491550020x is not listed on IDEAS
    8. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.00358. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.