IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.0878.html
   My bibliography  Save this paper

Market Coupling as the Universal Algorithm to Assess Zonal Divisions

Author

Listed:
  • Grzegorz Orynczak
  • Marcin Jakubek
  • Karol Wawrzyniak
  • Michal Klos

Abstract

Adopting a zonal structure of electricity market requires specification of zones' borders. In this paper we use social welfare as the measure to assess quality of various zonal divisions. The social welfare is calculated by Market Coupling algorithm. The analyzed divisions are found by the usage of extended Locational Marginal Prices (LMP) methodology presented in paper [1], which takes into account variable weather conditions. The offered method of assessment of a proposed division of market into zones is however not limited to LMP approach but can evaluate the social welfare of divisions obtained by any methodology.

Suggested Citation

  • Grzegorz Orynczak & Marcin Jakubek & Karol Wawrzyniak & Michal Klos, 2014. "Market Coupling as the Universal Algorithm to Assess Zonal Divisions," Papers 1405.0878, arXiv.org.
  • Handle: RePEc:arx:papers:1405.0878
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.0878
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burstedde, Barbara, 2012. "From Nodal to Zonal Pricing - A Bottom-Up Approach to the Second-Best," EWI Working Papers 2012-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    2. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    3. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Nuno Marinho & Yannick Phulpin & Adrien Atayi & Martin Hennebel, 2019. "Modeling Phase Shifters in Power System Simulations Based on Reduced Networks," Energies, MDPI, vol. 12(11), pages 1-13, June.
    5. Dobos, Teodora & Bichler, Martin & Knörr, Johannes, 2025. "Challenges in finding stable price zones in European electricity markets: Aiming to square the circle?," Applied Energy, Elsevier, vol. 382(C).
    6. Tim Felling & Robin Leisen & Caroline Podewski & Christoph Weber, 2019. "Evaluation of Risks for Electricity Generation Companies through Reconfiguration of Bidding Zones in Extended Central Western Europe," The Energy Journal, , vol. 40(1_suppl), pages 81-104, June.
    7. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    8. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    9. Bjørndal, Endre & Bjørndal, Mette & Gribkovskaia, Victoria, 2014. "A Nodal Pricing Model for the Nordic Electricity Market," Discussion Papers 2014/43, Norwegian School of Economics, Department of Business and Management Science.
    10. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    11. Neuhoff, Karsten & Wolter, Sophia & Schwenen, Sebastian, 2016. "Power markets with Renewables: New perspectives for the European Target Model," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 3-38.
    12. Felling, Tim & Weber, Christoph, 2018. "Consistent and robust delimitation of price zones under uncertainty with an application to Central Western Europe," Energy Economics, Elsevier, vol. 75(C), pages 583-601.
    13. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    14. Pöstges, Arne & Weber, Christoph, 2023. "Identifying key elements for adequate simplifications of investment choices – The case of wind energy expansion," Energy Economics, Elsevier, vol. 120(C).
    15. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    16. Dirk Hladik & Christoph Fraunholz & Matthias Kühnbach & Pia Manz & Robert Kunze, 2020. "Insights on Germany’s Future Congestion Management from a Multi-Model Approach," Energies, MDPI, vol. 13(16), pages 1-27, August.
    17. Katrin Trepper & Michael Bucksteeg & Christoph Weber, 2013. "An integrated approach to model redispatch and to assess potential benefits from market splitting in Germany," EWL Working Papers 1319, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    18. Teodora Dobos & Martin Bichler & Johannes Knorr, 2024. "Challenges in Finding Stable Price Zones in European Electricity Markets: Aiming to Square the Circle?," Papers 2404.06489, arXiv.org, revised Jan 2025.
    19. Haoke Wu & Tao Huang & Stefania Conti & Ettore Bompard, 2024. "A Framework for Assessing Electricity Market Performance under Different Bidding Zone Configurations," Energies, MDPI, vol. 17(11), pages 1-16, June.
    20. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.0878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.