IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.5179.html
   My bibliography  Save this paper

Collective behaviours in the stock market -- A maximum entropy approach

Author

Listed:
  • Thomas Bury

Abstract

Scale invariance, collective behaviours and structural reorganization are crucial for portfolio management (portfolio composition, hedging, alternative definition of risk, etc.). This lack of any characteristic scale and such elaborated behaviours find their origin in the theory of complex systems. There are several mechanisms which generate scale invariance but maximum entropy models are able to explain both scale invariance and collective behaviours. The study of the structure and collective modes of financial markets attracts more and more attention. It has been shown that some agent based models are able to reproduce some stylized facts. Despite their partial success, there is still the problem of rules design. In this work, we used a statistical inverse approach to model the structure and co-movements in financial markets. Inverse models restrict the number of assumptions. We found that a pairwise maximum entropy model is consistent with the data and is able to describe the complex structure of financial systems. We considered the existence of a critical state which is linked to how the market processes information, how it responds to exogenous inputs and how its structure changes. The considered data sets did not reveal a persistent critical state but rather oscillations between order and disorder. In this framework, we also showed that the collective modes are mostly dominated by pairwise co-movements and that univariate models are not good candidates to model crashes. The analysis also suggests a genuine adaptive process since both the maximum variance of the log-likelihood and the accuracy of the predictive scheme vary through time. This approach may provide some clue to crash precursors and may provide highlights on how a shock spreads in a financial network and if it will lead to a crash. The natural continuation of the present work could be the study of such a mechanism.

Suggested Citation

  • Thomas Bury, 2014. "Collective behaviours in the stock market -- A maximum entropy approach," Papers 1403.5179, arXiv.org, revised Mar 2014.
  • Handle: RePEc:arx:papers:1403.5179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.5179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Axelrod, Robert & Bennett, D. Scott, 1993. "A Landscape Theory of Aggregation," British Journal of Political Science, Cambridge University Press, vol. 23(2), pages 211-233, April.
    2. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    3. G. Livan & S. Alfarano & E. Scalas, 2011. "The fine structure of spectral properties for random correlation matrices: an application to financial markets," Papers 1102.4076, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bury, Thomas, 2014. "Predicting trend reversals using market instantaneous state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 79-91.
    2. Stefan Mittnik & Nikolay Robinzonov & Klaus Wohlrabe, 2013. "The Micro Dynamics of Macro Announcements," CESifo Working Paper Series 4421, CESifo.
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1/2003), pages 47-68, January.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    7. Kari Harju & Syed Mujahid Hussain, 2011. "Intraday Seasonalities and Macroeconomic News Announcements," European Financial Management, European Financial Management Association, vol. 17(2), pages 367-390, March.
    8. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    9. Valeria Bejarano-Salcedo & William Iván Moreno-Jimenez & Juan Manuel Julio-Román, 2020. "La Magnitud y Duración del Efecto de la Intervención por Subastas sobre el Mercado Cambiario: El caso Colombiano," Borradores de Economia 1142, Banco de la Republica de Colombia.
    10. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    12. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    13. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    16. Takatoshi Ito & Yuko Hashimoto, 2006. "Intra-day Seasonality in Activities of the Foreign Exchange Markets: Evidence from the Electronic Broking System (Subsequently published in "Journal of the Japanese and International Economies&qu," CARF F-Series CARF-F-064, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Elaut, Gert & Frömmel, Michael & Lampaert, Kevin, 2018. "Intraday momentum in FX markets: Disentangling informed trading from liquidity provision," Journal of Financial Markets, Elsevier, vol. 37(C), pages 35-51.
    18. Ben Omrane, Walid & Hussain, Syed Mujahid, 2016. "Foreign news and the structure of co-movement in European equity markets: An intraday analysis," Research in International Business and Finance, Elsevier, vol. 37(C), pages 572-582.
    19. Beine, Michel & Laurent, Sébastien & Palm, Franz C., 2009. "Central bank FOREX interventions assessed using realized moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 112-127, February.
    20. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.5179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.