IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.7328.html
   My bibliography  Save this paper

A family of density expansions for L\'evy-type processes

Author

Listed:
  • Matthew Lorig
  • Stefano Pagliarani
  • Andrea Pascucci

Abstract

We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Levy-type martingale subject to default. This class of models allows for local volatility, local default intensity, and a locally dependent Levy measure. Generalizing and extending the novel adjoint expansion technique of Pagliarani, Pascucci, and Riga (2013), we derive a family of asymptotic expansions for the transition density of the underlying as well as for European-style option prices and defaultable bond prices. For the density expansion, we also provide error bounds for the truncated asymptotic series. Our method is numerically efficient; approximate transition densities and European option prices are computed via Fourier transforms; approximate bond prices are computed as finite series. Additionally, as in Pagliarani et al. (2013), for models with Gaussian-type jumps, approximate option prices can be computed in closed form. Sample Mathematica code is provided.

Suggested Citation

  • Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A family of density expansions for L\'evy-type processes," Papers 1312.7328, arXiv.org.
  • Handle: RePEc:arx:papers:1312.7328
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.7328
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Pricing approximations and error estimates for local L\'evy-type models with default," Papers 1304.1849, arXiv.org, revised Nov 2014.
    2. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    3. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    4. Agostino Capponi & Stefano Pagliarani & Tiziano Vargiolu, 2014. "Pricing vulnerable claims in a Lévy-driven model," Finance and Stochastics, Springer, vol. 18(4), pages 755-789, October.
    5. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    6. Pagliarani, Stefano & Pascucci, Andrea, 2011. "Analytical approximation of the transition density in a local volatility model," MPRA Paper 31107, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A Taylor series approach to pricing and implied vol for LSV models," Papers 1308.5019, arXiv.org.
    2. Matthew Lorig & Ronnie Sircar, 2015. "Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio," Papers 1506.06180, arXiv.org.
    3. Jos'e E. Figueroa-L'opez & Yankeng Luo, 2015. "Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity," Papers 1505.04459, arXiv.org, revised Dec 2015.
    4. repec:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0330-x is not listed on IDEAS
    5. Tim Leung & Matthew Lorig & Andrea Pascucci, 2014. "Leveraged {ETF} implied volatilities from {ETF} dynamics," Papers 1404.6792, arXiv.org, revised Apr 2015.
    6. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Analytical expansions for parabolic equations," Papers 1312.3314, arXiv.org, revised Nov 2014.
    7. Agostino Capponi & Stefano Pagliarani & Tiziano Vargiolu, 2014. "Pricing vulnerable claims in a Lévy-driven model," Finance and Stochastics, Springer, vol. 18(4), pages 755-789, October.
    8. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2014. "Asymptotics for $d$-dimensional L\'evy-type processes," Papers 1404.3153, arXiv.org, revised Nov 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.7328. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.