IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.5447.html
   My bibliography  Save this paper

Explicit implied volatilities for multifactor local-stochastic volatility models

Author

Listed:
  • Matthew Lorig
  • Stefano Pagliarani
  • Andrea Pascucci

Abstract

We consider an asset whose risk-neutral dynamics are described by a general class of local-stochastic volatility models and derive a family of asymptotic expansions for European-style option prices and implied volatilities. Our implied volatility expansions are explicit; they do not require any special functions nor do they require numerical integration. To illustrate the accuracy and versatility of our method, we implement it under five different model dynamics: CEV local volatility, quadratic local volatility, Heston stochastic volatility, $3/2$ stochastic volatility, and SABR local-stochastic volatility.

Suggested Citation

  • Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Explicit implied volatilities for multifactor local-stochastic volatility models," Papers 1306.5447, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1306.5447
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.5447
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Pricing approximations and error estimates for local L\'evy-type models with default," Papers 1304.1849, arXiv.org, revised Nov 2014.
    3. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    4. Pagliarani, Stefano & Pascucci, Andrea, 2011. "Analytical approximation of the transition density in a local volatility model," MPRA Paper 31107, University Library of Munich, Germany.
    5. Martin Forde & Antoine Jacquier, 2011. "Small-Time Asymptotics for an Uncorrelated Local-Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(6), pages 517-535, April.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig, 2014. "Indifference prices and implied volatilities," Papers 1412.5520, arXiv.org, revised Sep 2015.
    2. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A Taylor series approach to pricing and implied vol for LSV models," Papers 1308.5019, arXiv.org.
    3. Matthew Lorig & Ronnie Sircar, 2015. "Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio," Papers 1506.06180, arXiv.org.
    4. Weston Barger & Matthew Lorig, 2016. "Approximate pricing of European and Barrier claims in a local-stochastic volatility setting," Papers 1610.05728, arXiv.org, revised Apr 2017.
    5. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    6. Tim Leung & Matthew Lorig, 2015. "Optimal Static Quadratic Hedging," Papers 1506.02074, arXiv.org, revised Nov 2015.
    7. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    8. Akihiko Takahashi & Toshihiro Yamada, 2014. "This paper proposes a unified method for precise estimates of the error bounds in asymptotic expansions of an option price and its Greeks (sensitivities) under a stochastic volatility model. More gene," CARF F-Series CARF-F-347, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Sep 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.5447. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.