IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1109.0738.html
   My bibliography  Save this paper

Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach

Author

Listed:
  • Matthew Lorig

Abstract

Using tools from spectral analysis, singular and regular perturbation theory, we develop a systematic method for analytically computing the approximate price of a derivative-asset. The payoff of the derivative-asset may be path-dependent. Additionally, the process underlying the derivative may exhibit killing (i.e. jump to default) as well as combined local/nonlocal stochastic volatility. The nonlocal component of volatility is multiscale, in the sense that it is driven by one fast-varying and one slow-varying factor. The flexibility of our modeling framework is contrasted by the simplicity of our method. We reduce the derivative pricing problem to that of solving a single eigenvalue equation. Once the eigenvalue equation is solved, the approximate price of a derivative can be calculated formulaically. To illustrate our method, we calculate the approximate price of three derivative-assets: a vanilla option on a defaultable stock, a path-dependent option on a non-defaultable stock, and a bond in a short-rate model.

Suggested Citation

  • Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
  • Handle: RePEc:arx:papers:1109.0738
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1109.0738
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Viatcheslav Gorovoi & Vadim Linetsky, 2004. "Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 49-78.
    2. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Peter Cotton & Jean-Pierre Fouque & George Papanicolaou & Ronnie Sircar, 2004. "Stochastic Volatility Corrections for Interest Rate Derivatives," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 173-200.
    5. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    6. Vyacheslav Gorovoy & Vadim Linetsky, 2007. "Intensity-Based Valuation Of Residential Mortgages: An Analytically Tractable Model," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 541-573.
    7. repec:wsi:ijtafx:v:07:y:2004:i:03:n:s0219024904002451 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.0738. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.