IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1305.3433.html
   My bibliography  Save this paper

Monte Carlo approximation to optimal investment

Author

Listed:
  • L C G Rogers
  • Pawel Zaczkowski

Abstract

This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.

Suggested Citation

  • L C G Rogers & Pawel Zaczkowski, 2013. "Monte Carlo approximation to optimal investment," Papers 1305.3433, arXiv.org.
  • Handle: RePEc:arx:papers:1305.3433
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1305.3433
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    3. Pagès Gilles & Printems Jacques, 2003. "Optimal quadratic quantization for numerics: the Gaussian case," Monte Carlo Methods and Applications, De Gruyter, vol. 9(2), pages 135-165, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suhan Altay & Katia Colaneri & Zehra Eksi, 2017. "Pairs Trading under Drift Uncertainty and Risk Penalization," Papers 1704.06697, arXiv.org, revised Sep 2018.
    2. Sara Biagini & Mustafa Pinar, 2015. "The Robust Merton Problem of an Ambiguity Averse Investor," Papers 1502.02847, arXiv.org.
    3. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.
    4. Zhaojun Yang & Chunhong Zhang, 2015. "The Pricing of Two Newly Invented Swaps in a Jump-Diffusion Model," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 371-392, November.
    5. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    6. Teemu Pennanen & Ari-Pekka Perkkio, 2016. "Convex duality in optimal investment and contingent claim valuation in illiquid markets," Papers 1603.02867, arXiv.org.
    7. Yves-Laurent Kom Samo & Alexander Vervuurt, 2016. "Stochastic Portfolio Theory: A Machine Learning Perspective," Papers 1605.02654, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    2. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    4. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    5. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    6. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    7. Roche, Hervé & Tompaidis, Stathis & Yang, Chunyu, 2013. "Why does junior put all his eggs in one basket? A potential rational explanation for holding concentrated portfolios," Journal of Financial Economics, Elsevier, vol. 109(3), pages 775-796.
    8. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    9. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    10. Bernard, Carole & Chen, Jit Seng & Vanduffel, Steven, 2015. "Rationalizing investors’ choices," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 10-23.
    11. Andrew Ang & Dimitris Papanikolaou & Mark M. Westerfield, 2014. "Portfolio Choice with Illiquid Assets," Management Science, INFORMS, vol. 60(11), pages 2737-2761, November.
    12. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    13. Tom Fischer, 2007. "Consumption processes and positively homogeneous projection properties," Papers 0711.4225, arXiv.org.
    14. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    15. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    16. Constantin ANGHELACHE & Mădălina-Gabriela ANGHEL & Ștefan Virgil IACOB & Dana Luiza GRIGORESCU, 2022. "Model for estimating the profitability of placing asset portfolios on the capital market," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(631), S), pages 187-195, Summer.
    17. Hui Chen & Jianjun Miao & Neng Wang, 2010. "Entrepreneurial Finance and Nondiversifiable Risk," The Review of Financial Studies, Society for Financial Studies, vol. 23(12), pages 4348-4388, December.
    18. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    19. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1305.3433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.