IDEAS home Printed from
   My bibliography  Save this paper

Bridging stylized facts in finance and data non-stationarities


  • Sabrina Camargo
  • Silvio M. Duarte Queiros
  • Celia Anteneodo


Employing a recent technique which allows the representation of nonstationary data by means of a juxtaposition of locally stationary patches of different length, we introduce a comprehensive analysis of the key observables in a financial market: the trading volume and the price fluctuations. From the segmentation procedure we are able to introduce a quantitative description of a group of statistical features (stylizes facts) of the trading volume and price fluctuations, namely the tails of each distribution, the U-shaped profile of the volume in a trading session and the evolution of the trading volume autocorrelation function. The segmentation of the trading volume series provides evidence of slow evolution of the fluctuating parameters of each patch, pointing to the mixing scenario. Assuming that long-term features are the outcome of a statistical mixture of simple local forms, we test and compare different probability density functions to provide the long-term distribution of the trading volume, concluding that the log-normal gives the best agreement with the empirical distribution. Moreover, the segmentation of the magnitude price fluctuations are quite different from the results for the trading volume, indicating that changes in the statistics of price fluctuations occur at a faster scale than in the case of trading volume.

Suggested Citation

  • Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197,, revised May 2013.
  • Handle: RePEc:arx:papers:1302.3197

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Edina Berlinger & Barbara Dömötör & Ferenc Illés & Kata Váradi, 2016. "Stress Indicator for Clearing Houses," Central European Business Review, University of Economics, Prague, vol. 2016(4), pages 47-60.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.3197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.