IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Note on "A Family of Maximum Entropy Densities Matching Call Option Prices"

Listed author(s):
  • Cassio Neri
  • Lorenz Schneider
Registered author(s):

    In Neri and Schneider (2012) we presented a method to recover the Maximum Entropy Density (MED) inferred from prices of call and digital options on a set of n strikes. To find the MED we need to numerically invert a one-dimensional function for n values and a Newton-Raphson method is suggested. In this note we revisit this inversion problem and show that it can be rewritten in terms of the Langevin function for which numerical approximations of its inverse are known. The approach is very similar to that of Buchen and Kelly (BK) with the difference that BK only requires call option prices. Then, in continuation of our first paper, we presented another approach which uses call prices only and recovers the same density as BK with a few advantages, notably, numerical stability. This second paper provides a detailed analysis of convergence and, in particular, gives various estimates of how far (in different senses) the iterative algorithm is from the solution. These estimates rely on a constant m > 0. The larger m is the better the estimates will be. A concrete value of m is suggested in the second paper, and this note provides a sharper value.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1212.4279.

    in new window

    Date of creation: Dec 2012
    Handle: RePEc:arx:papers:1212.4279
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
    2. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.4279. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.