IDEAS home Printed from
   My bibliography  Save this paper

A Note on "A Family of Maximum Entropy Densities Matching Call Option Prices"


  • Cassio Neri
  • Lorenz Schneider


In Neri and Schneider (2012) we presented a method to recover the Maximum Entropy Density (MED) inferred from prices of call and digital options on a set of n strikes. To find the MED we need to numerically invert a one-dimensional function for n values and a Newton-Raphson method is suggested. In this note we revisit this inversion problem and show that it can be rewritten in terms of the Langevin function for which numerical approximations of its inverse are known. The approach is very similar to that of Buchen and Kelly (BK) with the difference that BK only requires call option prices. Then, in continuation of our first paper, we presented another approach which uses call prices only and recovers the same density as BK with a few advantages, notably, numerical stability. This second paper provides a detailed analysis of convergence and, in particular, gives various estimates of how far (in different senses) the iterative algorithm is from the solution. These estimates rely on a constant m > 0. The larger m is the better the estimates will be. A concrete value of m is suggested in the second paper, and this note provides a sharper value.

Suggested Citation

  • Cassio Neri & Lorenz Schneider, 2012. "A Note on "A Family of Maximum Entropy Densities Matching Call Option Prices"," Papers 1212.4279,
  • Handle: RePEc:arx:papers:1212.4279

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
    2. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.4279. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.