IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Price manipulation in a market impact model with dark pool

  • Florian Kl\"ock
  • Alexander Schied
  • Yuemeng Sun
Registered author(s):

    For a market impact model, price manipulation and related notions play a role that is similar to the role of arbitrage in a derivatives pricing model. Here, we give a systematic investigation into such regularity issues when orders can be executed both at a traditional exchange and in a dark pool. To this end, we focus on a class of dark-pool models whose market impact at the exchange is described by an Almgren--Chriss model. Conditions for the absence of price manipulation for all Almgren--Chriss models include the absence of temporary cross-venue impact, the presence of full permanent cross-venue impact, and the additional penalization of orders executed in the dark pool. When a particular Almgren--Chriss model has been fixed, we show by a number of examples that the regularity of the dark-pool model hinges in a subtle way on the interplay of all model parameters and on the liquidation time constraint. The paper can also be seen as a case study for the regularity of market impact models in general.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1205.4008.

    in new window

    Date of creation: May 2012
    Date of revision: May 2014
    Handle: RePEc:arx:papers:1205.4008
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag\`es, 2009. "Optimal split of orders across liquidity pools: a stochastic algorithm approach," Papers 0910.1166,, revised May 2010.
    2. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    3. Schied, Alexander & Schoeneborn, Torsten, 2008. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," MPRA Paper 7105, University Library of Munich, Germany.
    4. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    5. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    6. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, 07.
    7. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    8. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.4008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.