IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.3757.html
   My bibliography  Save this paper

Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources

Author

Listed:
  • Maria B. Chiarolla
  • Giorgio Ferrari
  • Frank Riedel

Abstract

In this paper we study a continuous time, optimal stochastic investment problem under limited resources in a market with N firms. The investment processes are subject to a time-dependent stochastic constraint. Rather than using a dynamic programming approach, we exploit the concavity of the profit functional to derive some necessary and sufficient first order conditions for the corresponding Social Planner optimal policy. Our conditions are a stochastic infinite-dimensional generalization of the Kuhn-Tucker Theorem. The Lagrange multiplier takes the form of a nonnegative optional random measure on [0,T] which is flat off the set of times for which the constraint is binding, i.e. when all the fuel is spent. As a subproduct we obtain an enlightening interpretation of the first order conditions for a single firm in Bank (2005). In the infinite-horizon case, with operating profit functions of Cobb-Douglas type, our method allows the explicit calculation of the optimal policy in terms of the `base capacity' process, i.e. the unique solution of the Bank and El Karoui representation problem (2004).

Suggested Citation

  • Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
  • Handle: RePEc:arx:papers:1203.3757
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.3757
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maria B. Chiarolla & Giorgio Ferrari, 2011. "Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem," Papers 1108.4886, arXiv.org, revised Dec 2013.
    2. Frank Riedel & Xia Su, 2011. "On irreversible investment," Finance and Stochastics, Springer, vol. 15(4), pages 607-633, December.
    3. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    4. Ioannis Karatzas & Fridrik M. Baldursson, 1996. "Irreversible investment and industry equilibrium (*)," Finance and Stochastics, Springer, vol. 1(1), pages 69-89.
    5. Peter Bank & Frank Riedel, 2003. "Optimal Dynamic Choice of Durable and Perishable Goods," Levine's Bibliography 666156000000000402, UCLA Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria B. Chiarolla & Giorgio Ferrari, 2011. "Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem," Papers 1108.4886, arXiv.org, revised Dec 2013.
    2. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    3. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    4. Maria B. Chiarolla & Giorgio Ferrari & Gabriele Stabile, 2014. "Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs," Papers 1409.0665, arXiv.org, revised Jun 2015.
    5. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    6. Ferrari, Giorgio & Riedel, Frank & Steg, Jan-Henrik, 2016. "Continuous-Time Public Good Contribution under Uncertainty," Center for Mathematical Economics Working Papers 485, Center for Mathematical Economics, Bielefeld University.
    7. Chiarolla, Maria B. & Ferrari, Giorgio & Stabile, Gabriele, 2015. "Optimal dynamic procurement policies for a storable commodity with Lévy prices and convex holding costs," European Journal of Operational Research, Elsevier, vol. 247(3), pages 847-858.
    8. Giorgio Ferrari & Frank Riedel & Jan-Henrik Steg, 2013. "Continuous-Time Public Good Contribution under Uncertainty: A Stochastic Control Approach," Papers 1307.2849, arXiv.org, revised Oct 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.3757. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.