IDEAS home Printed from
   My bibliography  Save this article

Connections between optimal stopping and singular stochastic control


  • Boetius, Frederik
  • Kohlmann, Michael


We consider an optimal control problem for an Itô diffusion and a related stopping problem. Their value functions satisfy (d/dx)V=u and an optimal control defines an optimal stopping time. Conversely, we construct an optimal control from optimal stopping times, find a representation of V as an integral of u and describe the optimal state as a reflected process.

Suggested Citation

  • Boetius, Frederik & Kohlmann, Michael, 1998. "Connections between optimal stopping and singular stochastic control," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 253-281, September.
  • Handle: RePEc:eee:spapps:v:77:y:1998:i:2:p:253-281

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, Oxford University Press, vol. 101(4), pages 707-727.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. de Angelis, Tiziano & Federico, Salvatore & Ferrari, Giorgio, 2016. "On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment," Center for Mathematical Economics Working Papers 509, Center for Mathematical Economics, Bielefeld University.
    2. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    3. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    4. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655,, revised Nov 2017.
    5. de Angelis, Tiziano & Ferrari, Giorgio, 2016. "Stochastic nonzero-sum games: a new connection between singular control and optimal stopping," Center for Mathematical Economics Working Papers 565, Center for Mathematical Economics, Bielefeld University.
    6. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2014. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Papers 1406.4297,, revised Jan 2017.
    7. Xin Guo & Pascal Tomecek, 2008. "Solving Singular Control from Optimal Switching," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(1), pages 25-45, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:77:y:1998:i:2:p:253-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.