IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/709.html
   My bibliography  Save this paper

On the Optimal Management of Public Debt: a Singular Stochastic Control Problem

Author

Listed:
  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

Abstract

Consider the problem of a government that wants to reduce the debt-to-GDP (gross domestic product) ratio of a country. The government aims at choosing a debt reduction policy which minimizes the total expected cost of having debt, plus the total expected cost of interventions on the debt ratio. We model this problem as a singular stochastic control problem over an infinite time horizon. In a general not necessarily Markovian framework, we first show by probabilistic arguments that the optimal debt reduction policy can be expressed in terms of the optimal stopping rule of an auxiliary optimal stopping problem. We then exploit such a link to characterize the optimal control in a two-dimensional Markovian setting in which the state variables are the level of the debt-to-GDP ratio and the current inflation rate of the country. The latter follows uncontrolled Ornstein–Uhlenbeck dynamics and affects the growth rate of the debt ratio. We show that it is optimal for the government to adopt a policy that keeps the debt-to-GDP ratio under an inflation- dependent ceiling. This curve is given in terms of the solution of a nonlinear integral equation arising in the study of a fully two-dimensional optimal stopping problem.

Suggested Citation

  • Ferrari, Giorgio, 2025. "On the Optimal Management of Public Debt: a Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 709, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:709
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/3004624/3004625
    File Function: First Version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Jean Blanchard & Stanley Fischer, 1989. "Lectures on Macroeconomics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262022834, December.
    2. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    3. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2014. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Papers 1406.4297, arXiv.org, revised Jan 2017.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2017. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1135-1161, November.
    6. Jaejoon Woo & Manmohan S. Kumar, 2015. "Public Debt and Growth," Economica, London School of Economics and Political Science, vol. 82(328), pages 705-739, October.
    7. Maria B. Chiarolla & Giorgio Ferrari & Frank Riedel, 2012. "Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources," Papers 1203.3757, arXiv.org, revised Aug 2013.
    8. Ricardo Huamán-Aguilar & Abel Cadenillas, 2015. "Government Debt Control: Optimal Currency Portfolio and Payments," Operations Research, INFORMS, vol. 63(5), pages 1044-1057, October.
    9. Hindy, Ayman & Huang, Chi-fu, 1993. "Optimal Consumption and Portfolio Rules with Durability and Local Substitution," Econometrica, Econometric Society, vol. 61(1), pages 85-121, January.
    10. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Abel Cadenillas & Ricardo Huamán-Aguilar, 2016. "Explicit formula for the optimal government debt ceiling," Annals of Operations Research, Springer, vol. 247(2), pages 415-449, December.
    13. Savas Dayanik, 2008. "Optimal Stopping of Linear Diffusions with Random Discounting," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 645-661, August.
    14. Lee, Hsiu-Yun & Wu, Jyh-Lin, 2001. "Mean Reversion of Inflation Rates: Evidence from 13 OECD Countries," Journal of Macroeconomics, Elsevier, vol. 23(3), pages 477-487, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Giorgio, 2016. "Controlling public debt without forgetting Inflation," Center for Mathematical Economics Working Papers 564, Center for Mathematical Economics, Bielefeld University.
    2. Giorgio Ferrari, 2016. "On the Optimal Management of Public Debt: a Singular Stochastic Control Problem," Papers 1607.04153, arXiv.org, revised Dec 2017.
    3. Giorgia Callegaro & Claudia Ceci & Giorgio Ferrari, 2020. "Optimal reduction of public debt under partial observation of the economic growth," Finance and Stochastics, Springer, vol. 24(4), pages 1083-1132, October.
    4. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    5. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    6. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    7. Ferrari, Giorgio & Rodosthenous, Neofytos, 2019. "Optimal Control of Debt-To-GDP Ratio in an N-State Regime Switching Economy," Center for Mathematical Economics Working Papers 589, Center for Mathematical Economics, Bielefeld University.
    8. Callegaro, Giorgia & Ceci, Claudia & Ferrari, Giorgio, 2019. "Optimal Reduction of Public Debt under Partial Observation of the Economic Growth," Center for Mathematical Economics Working Papers 608, Center for Mathematical Economics, Bielefeld University.
    9. Junkee Jeon & Geonwoo Kim, 2020. "An Integral Equation Approach to the Irreversible Investment Problem with a Finite Horizon," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    10. Giorgia Callegaro & Claudia Ceci & Giorgio Ferrari, 2019. "Optimal Reduction of Public Debt under Partial Observation of the Economic Growth," Papers 1901.08356, arXiv.org, revised Jan 2019.
    11. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    12. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    13. Barbara Annicchiarico & Fabio Di Dio & Stefano Patrì, 2023. "Optimal correction of the public debt and measures of fiscal soundness," Metroeconomica, Wiley Blackwell, vol. 74(1), pages 138-162, February.
    14. Felix Dammann & Giorgio Ferrari, 2023. "Optimal execution with multiplicative price impact and incomplete information on the return," Finance and Stochastics, Springer, vol. 27(3), pages 713-768, July.
    15. Giorgio Ferrari & Tiziano Vargiolu, 2020. "On the singular control of exchange rates," Annals of Operations Research, Springer, vol. 292(2), pages 795-832, September.
    16. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    17. Andrea Bovo & Tiziano De Angelis & Jan Palczewski, 2023. "Stopper vs. singular-controller games with degenerate diffusions," Papers 2312.00613, arXiv.org, revised Jul 2024.
    18. Salvatore Federico & Mauro Rosestolato & Elisa Tacconi, 2018. "Irreversible investment with fixed adjustment costs: a stochastic impulse control approach," Papers 1801.04491, arXiv.org, revised Feb 2019.
    19. Andrea Bovo & Tiziano De Angelis & Jan Palczewski, 2023. "Zero-sum stopper vs. singular-controller games with constrained control directions," Papers 2306.05113, arXiv.org, revised Feb 2024.
    20. Jodi Dianetti & Giorgio Ferrari & Renyuan Xu, 2024. "Exploratory Optimal Stopping: A Singular Control Formulation," Papers 2408.09335, arXiv.org, revised Oct 2024.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.